Suppr超能文献

滴定板格式的连续流动热反应器:纳升反应器的设计与性能

Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.

作者信息

Chen Pin-Chuan, Park Daniel S, You Byoung-Hee, Kim Namwon, Park Taehyun, Soper Steven A, Nikitopoulos Dimitris E, Murphy Michael C

机构信息

Center for Bio-ModularMulti-Scale System, Louisiana State University, Baton Rouge, LA, USA.

出版信息

Sens Actuators B Chem. 2010 Aug 6;149(1):291-300. doi: 10.1016/j.snb.2010.05.068.

Abstract

Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow velocity, fragment length, and copy number. A 99 bp DNA fragment was successfully amplified at flow velocities from 1 mm/s to 3 mm/s, requiring from 8.16 minutes for 20 cycles (24.48 s/cycle) to 2.72 minutes for 20 cycles (8.16 s/cycle), respectively. Yield compared to the same amplification sequence performed using a bench top thermal cycler decreased nonlinearly from 73% (at 1 mm/s) to 13% (at 3 mm/s) with shorter residence time at the optimal temperatures for the reactions due to increased flow rate primarily responsible. Six different DNA fragments with lengths between 99 bp and 997 bp were successfully amplified at 1 mm/s. Repeatable, successful amplification of a 99 bp fragment was achieved with a minimum of 8000 copies of the DNA template. This is the first demonstration and characterization of continuous flow thermal reactors within the 8 mm × 8 mm footprint of a 96-well micro-titer plate and is the smallest continuous flow PCR to date.

摘要

连续流热反应器阵列被设计、配置并制作成96个装置(12×8)的滴定板形式,整体尺寸为120毫米×96毫米,每个反应器的占地面积为8毫米×8毫米。为了展示其潜力,分别使用20个循环(740纳升)和25个循环(990纳升)的单个反应器进行连续流聚合酶链反应(CFPCR),以扩增不同长度的DNA片段。由于所需温度区域的热隔离对于优化生化反应至关重要,因此使用了三个由ANSYS(版本11.0,宾夕法尼亚州卡农斯堡)执行的有限元模型来表征热性能并指导系统设计:(1)单个装置以确定热管理结构的尺寸;(2)一个位于8毫米×8毫米区域内的单个CFPCR装置,以评估恒温区域的完整性;(3)一个代表螺旋CFPCR装置单环的单个直微通道,考虑所有传热模式,以确定PCR混合物是否经历了适当的温度循环。在先前对较大占地面积装置的研究中,温度区域之间简单的凹槽提供了足够的热阻。对于小占地面积的反应器阵列,凹槽内需要0.4毫米宽、1.2毫米高的翅片,以便在PCR混合物从变性区流向复性区时,以15.8°C/毫米的温度梯度有效地冷却它。在标称温度周围定义了±2°C的温度容差带,超过72.5%的微通道长度位于所需温度带内。在较高的PCR混合物流速下,PCR混合物在每个温度区域的停留时间减少,区域之间的过渡时间增加,导致扩增反应的时间减少。实验证明了CFPCR装置的性能是流速、片段长度和拷贝数的函数。一个99碱基对的DNA片段在1毫米/秒至3毫米/秒的流速下成功扩增,20个循环分别需要8.16分钟(24.48秒/循环)至2.72分钟(8.16秒/循环)。与使用台式热循环仪进行的相同扩增序列相比,由于主要是流速增加导致在反应的最佳温度下停留时间缩短,产量从73%(在1毫米/秒时)非线性下降至13%(在3毫米/秒时)。六个长度在99碱基对至997碱基对之间的不同DNA片段在1毫米/秒的流速下成功扩增。使用最少8000个DNA模板拷贝实现了99碱基对片段的可重复成功扩增。这是首次在96孔微量滴定板8毫米×8毫米的占地面积内对连续流热反应器进行演示和表征,并且是迄今为止最小的连续流PCR。

相似文献

1
Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.
Sens Actuators B Chem. 2010 Aug 6;149(1):291-300. doi: 10.1016/j.snb.2010.05.068.
2
Temperature distribution effects on micro-CFPCR performance.
Biomed Microdevices. 2008 Apr;10(2):141-52. doi: 10.1007/s10544-007-9119-6.
3
Rapid PCR in a continuous flow device.
Lab Chip. 2004 Dec;4(6):638-45. doi: 10.1039/b406860b. Epub 2004 Oct 19.
4
Continuous-flow thermal gradient PCR.
Biomed Microdevices. 2008 Apr;10(2):187-95. doi: 10.1007/s10544-007-9124-9.
5
Continuous flow thermal cycler microchip for DNA cycle sequencing.
Anal Chem. 2006 Sep 1;78(17):6223-31. doi: 10.1021/ac060568b.
6
Parallel-processing continuous-flow device for optimization-free polymerase chain reaction.
Anal Bioanal Chem. 2016 Sep;408(24):6751-8. doi: 10.1007/s00216-016-9798-z. Epub 2016 Jul 29.
7
Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification.
IEEE Trans Nanobioscience. 2022 Jan;21(1):97-104. doi: 10.1109/TNB.2021.3092292. Epub 2021 Dec 30.
9
A circular ferrofluid driven microchip for rapid polymerase chain reaction.
Lab Chip. 2007 Aug;7(8):1012-7. doi: 10.1039/b700575j. Epub 2007 Jun 13.
10
Rapid PCR thermocycling using microscale thermal convection.
J Vis Exp. 2011 Mar 5(49):2366. doi: 10.3791/2366.

引用本文的文献

1
Transformation gap from research findings to large-scale commercialized products in microfluidic field.
Mater Today Bio. 2024 Nov 29;29:101373. doi: 10.1016/j.mtbio.2024.101373. eCollection 2024 Dec.
2
Snap-on Adaptor for Microtiter Plates to Enable Continuous-Flow Microfluidic Screening and Harvesting of Crystalline Materials.
ACS Omega. 2023 Oct 23;8(44):41502-41511. doi: 10.1021/acsomega.3c05478. eCollection 2023 Nov 7.
3
Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics.
Micromachines (Basel). 2022 Sep 10;13(9):1503. doi: 10.3390/mi13091503.
4
Leakage pressures for gasketless superhydrophobic fluid interconnects for modular lab-on-a-chip systems.
Microsyst Nanoeng. 2021 Sep 2;7:69. doi: 10.1038/s41378-021-00287-6. eCollection 2021.
5
Assembly of Polymer Microfluidic Components and Modules: Validating Models of Passive Alignment Accuracy.
J Microelectromech Syst. 2015 Jun;24(3):634-650. doi: 10.1109/JMEMS.2014.2339733. Epub 2014 Aug 1.
6
Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method.
Micromachines (Basel). 2017 Aug 29;8(9):264. doi: 10.3390/mi8090264.
7
Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator.
Micromachines (Basel). 2017 Jul 12;8(7):218. doi: 10.3390/mi8070218.
8
Performance evaluation of optimal real-time polymerase chain reaction achieved with reduced voltage.
Biomed Eng Online. 2018 Nov 6;17(Suppl 2):156. doi: 10.1186/s12938-018-0579-0.
9
Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
Sens Actuators B Chem. 2018 Jan;254:1249-1258. doi: 10.1016/j.snb.2017.07.189. Epub 2017 Aug 2.
10
Advances in microfluidic materials, functions, integration, and applications.
Chem Rev. 2013 Apr 10;113(4):2550-83. doi: 10.1021/cr300337x. Epub 2013 Feb 14.

本文引用的文献

1
Product differentiation during continuous-flow thermal gradient PCR.
Lab Chip. 2008 Jun;8(6):919-24. doi: 10.1039/b716437h. Epub 2008 Apr 18.
2
Temperature distribution effects on micro-CFPCR performance.
Biomed Microdevices. 2008 Apr;10(2):141-52. doi: 10.1007/s10544-007-9119-6.
3
Continuous-flow thermal gradient PCR.
Biomed Microdevices. 2008 Apr;10(2):187-95. doi: 10.1007/s10544-007-9124-9.
4
A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification.
Biomed Microdevices. 2008 Feb;10(1):21-33. doi: 10.1007/s10544-007-9106-y.
5
Interaction of quantitative PCR components with polymeric surfaces.
Biomed Microdevices. 2007 Apr;9(2):261-6. doi: 10.1007/s10544-006-9030-6.
7
New microbiology tools for public health and their implications.
Annu Rev Public Health. 2005;26:281-302. doi: 10.1146/annurev.publhealth.26.021304.144522.
9
Rapid PCR in a continuous flow device.
Lab Chip. 2004 Dec;4(6):638-45. doi: 10.1039/b406860b. Epub 2004 Oct 19.
10
The Human Genome Project: lessons from large-scale biology.
Science. 2003 Apr 11;300(5617):286-90. doi: 10.1126/science.1084564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验