Suppr超能文献

依赖样本中健康状况的多维评估:对中国成年双胞胎的探索性分析。

Multidimensional assessment of health status in a dependent sample: an exploratory analysis for adult twins in China.

作者信息

Ning Yan, Gu Danan, Hu Yonghua, Ji Wenyan, Pang Zengchang, Wang Shaojie

机构信息

Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing 100191, China.

出版信息

Twin Res Hum Genet. 2010 Oct;13(5):465-74. doi: 10.1375/twin.13.5.465.

Abstract

Health is a multidimensional and continual concept. Traditional latent analytic approaches have inherent deficits in capturing the complex nature of the concept; however, the Grade of Membership (GoM) model is well suited for this problem. We applied the GoM method to a set of 31 indicators to construct ideal profiles of health status based on physical, mental and social support items among 848 adult twins from Qingdao, China. Four profiles were identified: healthy individuals (pure type I), individuals with personality disorders (pure type II), individuals with mental impairments (pure type III) and individuals with physical impairments (pure type IV). The most frequently occurring combination in this population was profiles I, II, IV (14.74%), followed by profiles I, II, III, IV (13.44%), and then type I (11.08%). Only 13.56% of subjects fell completely into one single pure type, most individuals exhibited some of the characteristics of two or more pure types. Our results indicated that, compared to conventional statistical methods, the GoM model was more suited to capture the complex concept of health, reflecting its multidimensionality and continuity, while also exhibiting preferable reliability. This study also made an important contribution to research on GoM application in non-independent samples.

摘要

健康是一个多维度的持续概念。传统的潜在分析方法在捕捉该概念的复杂本质方面存在固有缺陷;然而,隶属度(GoM)模型非常适合解决这个问题。我们将GoM方法应用于一组31项指标,以基于来自中国青岛的848对成年双胞胎的身体、心理和社会支持项目构建健康状况的理想概况。识别出了四种概况:健康个体(纯I型)、患有个性障碍的个体(纯II型)、患有精神障碍的个体(纯III型)和患有身体障碍的个体(纯IV型)。该人群中最常出现的组合是概况I、II、IV(14.74%),其次是概况I、II、III、IV(13.44%),然后是I型(11.08%)。只有13.56%的受试者完全属于单一的纯类型,大多数个体表现出两种或更多纯类型的一些特征。我们的结果表明,与传统统计方法相比,GoM模型更适合捕捉健康的复杂概念,反映其多维度性和连续性,同时还表现出更好的可靠性。本研究也为GoM在非独立样本中的应用研究做出了重要贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验