Suppr超能文献

壳层-壳层法合成多壳层介孔硅纳米球用于光学成像和药物传递。

Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery.

机构信息

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.

出版信息

Biomaterials. 2011 Jan;32(2):556-64. doi: 10.1016/j.biomaterials.2010.08.114. Epub 2010 Sep 27.

Abstract

Self-templated synthesis involving interior channel wall protection as well as outermost surface passivation was crucial to successful synthesis of multi-shelled mesoporous silica nanospheres. The shell-by-shell fabrication of double- and triple-walled mesoporous silica nanospheres downsized to ∼100 nm. The multi-shelled mesoporous silica can be built as rattle-type or hollow structures with ∼110 nm of double-shelled and ∼140 nm of triple-shelled sizes. Notably, the shell-to-shell distance can be tuned by controlling the etching period from the self-templation processes without changing the multi-shelled size or interior core diameter. The multi-shelled mesoporous nanostructures provide a platform for the development of a multifunctional vector by the inclusion of functional species into shell-to-shell cavities and porous shells. The encapsulation of the fluorophore and drug in shell-to-shell space and mesoporous shells showed that multi-shelled silica spheres can be used in dual-modality for imaging and drug co-delivery vectors through the appropriate selection of pH-dependent molecules. The in vitro evaluation in triple-shelled silica indicated that an anti-cancer doxorubicin (DOX), loaded in the outer periphery space, was successfully carried and released in the cytoplasm, then entered nuclei while fluorescein FITC (primarily distributed in inner periphery space) was effectively encapsulated inside the spheres. The double- and triple-shelled nanospheres consistently provided imaging probes with visible tracking capability in vitro and in vivo.

摘要

自模板合成涉及内部通道壁的保护以及最外层表面的钝化,这对于成功合成多壳层介孔硅纳米球至关重要。采用层层自组装的方法可以制备出尺寸约为 100nm 的双壁和三壁介孔硅纳米球。这种多壳层介孔硅可以构建成类似响铃或空心结构,其中双壳层的尺寸约为 110nm,三壳层的尺寸约为 140nm。值得注意的是,通过控制自模板过程中的刻蚀周期,可以在不改变多壳层尺寸或核内直径的情况下调节壳层间的距离。这种多壳层介孔纳米结构为多功能载体的发展提供了一个平台,可以通过将功能物种包埋到壳层间空腔和多孔壳层中来实现。将荧光团和药物包埋到壳层间空间和介孔壳层中表明,多壳层硅球可以通过选择 pH 依赖性分子来用于双重模式成像和药物共递药载体。在三壳层硅的体外评估中,表明负载在外壳周围空间的抗癌药物阿霉素(DOX)可以成功地在细胞质中携带和释放,然后进入细胞核,而荧光素 FITC(主要分布在内周空间)则有效地封装在球体内部。双壳层和三壳层纳米球在体外和体内都提供了具有可见跟踪能力的成像探针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验