Suppr超能文献

祖先草染色体组型重建揭示了基因组改组作为植物进化来源的新机制。

Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.

机构信息

INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France.

出版信息

Genome Res. 2010 Nov;20(11):1545-57. doi: 10.1101/gr.109744.110. Epub 2010 Sep 28.

Abstract

The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.

摘要

比较当今物种的染色体数量与常见的重建古祖先,引发了人们对哺乳动物染色体随时间发生重排的强烈猜测。然而,由于缺乏与进化变焦相关的基因组序列的相关实例,类似的关于植物基因组进化以及导致镶嵌同线性块的分子机制的研究在植物中一直缺乏。此类研究需要属于同一科但分化为不同亚科的物种的基因组。我们最重要的作物属于禾本科,其中许多基因组现已测序。基于详细的古基因组学,使用 n = 5-12 个草类祖先染色体组(AGK)的基因内容和顺序推断,我们描绘了包含来自水稻、玉米、高粱和拟南芥基因组中同源区域完整一套连接断点的序列间隔,代表三个不同的亚科和不同的多倍化事件。通过关注这些序列间隔,我们可以表明,来自 n = 12 个共同古祖先的染色体数量减少是由非随机着丝粒双链断裂修复事件驱动的。似乎非同源染色体之间的着丝粒/端粒的非法重组导致了嵌套染色体融合(NCFs)和同线性断裂点(SBPs)。当比较包含 NCF 的间隔的结构时,我们得出结论,SBPs(1)是减数分裂重组热点,(2)对应于通过重复入侵的高序列转换位点,(3)可能被视为产生适应性表型的新的进化热点的热点。

相似文献

1
Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.
Genome Res. 2010 Nov;20(11):1545-57. doi: 10.1101/gr.109744.110. Epub 2010 Sep 28.
2
Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages.
Plant Cell. 2011 Jan;23(1):27-37. doi: 10.1105/tpc.110.080622. Epub 2011 Jan 25.
4
Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
Plant J. 2012 Aug;71(3):492-502. doi: 10.1111/j.1365-313X.2012.05005.x. Epub 2012 Jun 5.
5
Genome sequencing and analysis of the model grass Brachypodium distachyon.
Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.
6
Mosaic organization of orthologous sequences in grass genomes.
Genome Res. 2002 Oct;12(10):1549-55. doi: 10.1101/gr.268302.
8
The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.
Plant Physiol. 2013 Feb;161(2):571-82. doi: 10.1104/pp.112.207282. Epub 2012 Nov 26.
9
Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum.
Genetics. 2005 Feb;169(2):891-906. doi: 10.1534/genetics.104.034629. Epub 2004 Oct 16.
10
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5. doi: 10.1073/pnas.0908195106. Epub 2009 Aug 26.

引用本文的文献

3
Genomic and evolutionary evidence for drought adaptation of allopolyploid Brachypodium hybridum.
J Exp Bot. 2025 Jul 2;76(10):2924-2938. doi: 10.1093/jxb/eraf128.
4
Exaptation of ancestral cell-identity networks enables C photosynthesis.
Nature. 2024 Dec;636(8041):143-150. doi: 10.1038/s41586-024-08204-3. Epub 2024 Nov 20.
5
A genome assembly of decaploid provides insights into the evolution of and the biosynthesis of alkaloids.
Hortic Res. 2024 Jul 30;11(9):uhae203. doi: 10.1093/hr/uhae203. eCollection 2024 Sep.
6
Genome evolution of the ancient hexaploid × (London planetree).
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2319679121. doi: 10.1073/pnas.2319679121. Epub 2024 Jun 3.
8
Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2313921121. doi: 10.1073/pnas.2313921121. Epub 2024 Apr 3.
9
Chromosome-level genome of reveals molecular mechanism of aroma compounds biosynthesis.
Front Plant Sci. 2024 Mar 13;15:1368869. doi: 10.3389/fpls.2024.1368869. eCollection 2024.
10
Chromosomal dynamics in : comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations.
Front Plant Sci. 2023 Dec 14;14:1288220. doi: 10.3389/fpls.2023.1288220. eCollection 2023.

本文引用的文献

1
Yeast ancestral genome reconstructions: the possibilities of computational methods II.
J Comput Biol. 2010 Sep;17(9):1097-112. doi: 10.1089/cmb.2010.0092.
2
Patching gaps in plant genomes results in gene movement and erosion of colinearity.
Genome Res. 2010 Sep;20(9):1229-37. doi: 10.1101/gr.107284.110. Epub 2010 Jun 7.
3
Uncoupling of satellite DNA and centromeric function in the genus Equus.
PLoS Genet. 2010 Feb 12;6(2):e1000845. doi: 10.1371/journal.pgen.1000845.
4
Genome sequencing and analysis of the model grass Brachypodium distachyon.
Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.
5
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
7
Amplification of prolamin storage protein genes in different subfamilies of the Poaceae.
Theor Appl Genet. 2009 Nov;119(8):1397-412. doi: 10.1007/s00122-009-1143-x. Epub 2009 Aug 29.
8
Improved criteria and comparative genomics tool provide new insights into grass paleogenomics.
Brief Bioinform. 2009 Nov;10(6):619-30. doi: 10.1093/bib/bbp037. Epub 2009 Aug 31.
9
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5. doi: 10.1073/pnas.0908195106. Epub 2009 Aug 26.
10
Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13. doi: 10.1073/pnas.0902350106. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验