Suppr超能文献

一种检测基因表达中非线性相关性的非参数方法。

A nonparametric approach to detect nonlinear correlation in gene expression.

作者信息

Chen Y Ann, Almeida Jonas S, Richards Adam J, Müller Peter, Carroll Raymond J, Rohrer Baerbel

机构信息

Department of Biostatistics, Moffitt Cancer Center, Tampa, FL, USA,

出版信息

J Comput Graph Stat. 2010 Sep 1;19(3):552-568. doi: 10.1198/jcgs.2010.08160.

Abstract

We propose a distribution-free approach to detect nonlinear relationships by reporting local correlation. The effect of our proposed method is analogous to piece-wise linear approximation although the method does not utilize any linear dependency. The proposed metric, maximum local correlation, was applied to both simulated cases and expression microarray data comparing the rd mouse with age-matched control animals. The rd mouse is an animal model (with a mutation for the gene Pde6b) for photoreceptor degeneration. Using simulated data, we show that maximum local correlation detects nonlinear association, which could not be detected using other correlation measures. In the microarray study, our proposed method detects nonlinear association between the expression levels of different genes, which could not be detected using the conventional linear methods. The simulation dataset, microarray expression data, and the Nonparametric Nonlinear Correlation (NNC) software library, implemented in Matlab, are included as part of the online supplemental materials.

摘要

我们提出一种无分布方法,通过报告局部相关性来检测非线性关系。尽管该方法未利用任何线性相关性,但其效果类似于分段线性近似。所提出的度量标准——最大局部相关性,被应用于模拟案例和表达微阵列数据,将rd小鼠与年龄匹配的对照动物进行比较。rd小鼠是一种用于光感受器退化的动物模型(具有Pde6b基因突变)。使用模拟数据,我们表明最大局部相关性能够检测到非线性关联,而其他相关性度量方法则无法检测到。在微阵列研究中,我们提出的方法能够检测到不同基因表达水平之间的非线性关联,这是传统线性方法无法检测到的。作为在线补充材料的一部分,包含了模拟数据集、微阵列表达数据以及用Matlab实现的非参数非线性相关性(NNC)软件库。

相似文献

引用本文的文献

6
Predicting Dynamic Metabolic Demands in the Photosynthetic Eukaryote .预测光合真核生物中的动态代谢需求
Plant Physiol. 2018 Jan;176(1):450-462. doi: 10.1104/pp.17.00605. Epub 2017 Sep 26.
8
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.

本文引用的文献

3
Clustering of diverse genomic data using information fusion.利用信息融合对多样的基因组数据进行聚类分析。
Bioinformatics. 2005 Feb 15;21(4):423-9. doi: 10.1093/bioinformatics/bti186. Epub 2004 Dec 17.
5
Getting the noise out of gene arrays.去除基因芯片中的噪声。
Science. 2004 Oct 22;306(5696):630-1. doi: 10.1126/science.306.5696.630.
8
Statistical significance for genomewide studies.全基因组研究的统计学显著性
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5. doi: 10.1073/pnas.1530509100. Epub 2003 Jul 25.
9
Computational systems biology.计算系统生物学
Nature. 2002 Nov 14;420(6912):206-10. doi: 10.1038/nature01254.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验