Suppr超能文献

微流控平行电路用于测量水力阻力。

Microfluidic parallel circuit for measurement of hydraulic resistance.

机构信息

Department of Bio and Brain Engineering, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea.

出版信息

Biomicrofluidics. 2010 Aug 31;4(3):034110. doi: 10.1063/1.3486609.

Abstract

We present a microfluidic parallel circuit that directly compares the test channel of an unknown hydraulic resistance with the reference channel with a known resistance, thereby measuring the unknown resistance without any measurement setup, such as standard pressure gauges. Many of microfluidic applications require the precise transport of fluid along a channel network with complex patterns. Therefore, it is important to accurately characterize and measure the hydraulic resistance of each channel segment, and determines whether the device principle works well. However, there is no fluidic device that includes features, such as the ability to diagnose microfluidic problems by measuring the hydraulic resistance of a microfluidic component in microscales. To address the above need, we demonstrate a simple strategy to measure an unknown hydraulic resistance, by characterizing the hydraulic resistance of microchannels with different widths and defining an equivalent linear channel of a microchannel with repeated patterns of a sudden contraction and expansion.

摘要

我们提出了一种微流控并联电路,该电路直接将未知水力阻力的测试通道与具有已知阻力的参考通道进行比较,从而在无需任何测量设置(例如标准压力表)的情况下测量未知阻力。许多微流控应用需要沿着具有复杂图案的通道网络精确地输送流体。因此,准确地描述和测量每个通道段的水力阻力并确定器件原理是否运行良好非常重要。但是,没有能够通过测量微尺度下微流控元件的水力阻力来诊断微流控问题的流体装置。为了解决上述需求,我们通过对具有不同宽度的微通道的水力阻力进行特征化,并定义了具有重复突然收缩和扩张图案的微通道的等效线性通道,展示了一种测量未知水力阻力的简单策略。

相似文献

1
Microfluidic parallel circuit for measurement of hydraulic resistance.
Biomicrofluidics. 2010 Aug 31;4(3):034110. doi: 10.1063/1.3486609.
2
Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
Biomicrofluidics. 2013 Jul 26;7(4):44106. doi: 10.1063/1.4816713. eCollection 2013.
3
A method for dynamic system characterization using hydraulic series resistance.
Lab Chip. 2006 May;6(5):639-44. doi: 10.1039/b517054k. Epub 2006 Mar 20.
4
Design of pressure-driven microfluidic networks using electric circuit analogy.
Lab Chip. 2012 Feb 7;12(3):515-45. doi: 10.1039/c2lc20799k. Epub 2011 Dec 16.
5
High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure.
Biomicrofluidics. 2012 Jun;6(2):24108-241089. doi: 10.1063/1.4704504. Epub 2012 Apr 13.
7
A semi-experimental procedure for the estimation of permeability of microfluidic pore network.
MethodsX. 2019 Apr 2;6:704-713. doi: 10.1016/j.mex.2019.03.025. eCollection 2019.
10
Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control.
Biomed Microdevices. 2010 Feb;12(1):135-44. doi: 10.1007/s10544-009-9368-7.

引用本文的文献

1
A passive flow microreactor for urine creatinine test.
Microsyst Nanoeng. 2025 Apr 2;11(1):56. doi: 10.1038/s41378-025-00880-z.
2
Universal Murray's law for optimised fluid transport in synthetic structures.
Nat Commun. 2024 May 7;15(1):3652. doi: 10.1038/s41467-024-47833-0.
3
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
4
Dynamic Observation of Retinal Response to Pressure Elevation in a Microfluidic Chamber.
Anal Chem. 2022 Sep 13;94(36):12297-12304. doi: 10.1021/acs.analchem.1c05652. Epub 2022 Aug 26.
6
A novel air microfluidics-enabled soft robotic sleeve: Toward realizing innovative lymphedema treatment.
Biomicrofluidics. 2022 May 3;16(3):034101. doi: 10.1063/5.0079898. eCollection 2022 May.
7
3D Printed Reconfigurable Modular Microfluidic System for Generating Gel Microspheres.
Micromachines (Basel). 2020 Feb 21;11(2):224. doi: 10.3390/mi11020224.
8
TOWARD A MICROFLUIDIC IMPLEMENTATION OF A DIGITAL POTENTIOMETER.
Proc Des Med Devices Conf. 2018 Apr;2018. doi: 10.1115/DMD2018-6812.
10
Predicting the behavior of microfluidic circuits made from discrete elements.
Sci Rep. 2015 Oct 30;5:15609. doi: 10.1038/srep15609.

本文引用的文献

2
Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips.
Biomicrofluidics. 2009 Sep 17;3(3):34105. doi: 10.1063/1.3230500.
3
Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks.
Biomicrofluidics. 2009 Mar 30;3(1):12804. doi: 10.1063/1.3109686.
5
Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
Lab Chip. 2009 Apr 7;9(7):982-90. doi: 10.1039/b815002h. Epub 2008 Dec 19.
6
Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators.
Lab Chip. 2009 Mar 7;9(5):709-17. doi: 10.1039/b813582g. Epub 2008 Nov 21.
7
Microfluidic assembly blocks.
Lab Chip. 2008 Aug;8(8):1365-73. doi: 10.1039/b805137b. Epub 2008 Jul 4.
8
Viscosimeter on a microfluidic chip.
Langmuir. 2006 Jul 4;22(14):6438-45. doi: 10.1021/la060131z.
9
A method for dynamic system characterization using hydraulic series resistance.
Lab Chip. 2006 May;6(5):639-44. doi: 10.1039/b517054k. Epub 2006 Mar 20.
10
High-speed microfluidic differential manometer for cellular-scale hydrodynamics.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):538-42. doi: 10.1073/pnas.0507171102. Epub 2006 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验