Physiology M311, School of Biomedical, Biomolecular, and Chemical Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
J Comp Physiol B. 2011 Feb;181(2):277-88. doi: 10.1007/s00360-010-0513-7. Epub 2010 Sep 28.
Panting is a mechanism that increases respiratory evaporative heat loss (REHL) under heat load. Because REHL uses body water, it is physiologically and ecologically relevant to know under what conditions free-ranging animals use panting. We investigated whether the cranial arterio-venous temperature difference could provide information about REHL. We exposed sheep to environments varying in ambient dry bulb temperatures (Env 1: ~15°C, Env 2: ~25°C, Env 3: ~40°C, Env 4: ~40°C + infrared radiation) and measured REHL simultaneously with carotid arterial (T (car)) and jugular venous (T (jug)) blood temperatures, as well as brain (T (brain)) and rectal (T (rec)) temperatures. REHL increased significantly with ambient temperature, from 18.4 ± 4.5 W at Env 1 to 79.5 ± 12.6 W at Env 4 (P < 10(-6)). While there was no effect of environment on T (car) (P = 0.7) or T (jug) (P = 0.09), the difference between them (T (a-v) = T (car) - T (jug)) increased from Env 1 to Env 2 (P = 0.04) and from Env 3 to Env 4 (P = 0.008). T (a-v) reached a maximum of 0.7 ± 0.2°C at Env 4 and was positively correlated with REHL across environments (r (2) = 0.78, F = 34.7, P < 10(-3)). Calculated cranial blood flow changed only from Env 2 to Env 3 (P = 0.002). The increase in REHL maintained homeothermy when dry heat loss decreased. While REHL could increase without generating an increase in T (a-v), any increase in T (a-v) was always associated with an increase in REHL. We conclude that the cranial T (a-v) provides useful information about REHL in panting animals.
喘气是一种在热负荷下增加呼吸蒸发散热(REHL)的机制。因为 REHL 使用身体水分,所以了解自由放养动物在什么条件下使用喘气是生理和生态上相关的。我们研究了颅动脉-静脉温差是否可以提供有关 REHL 的信息。我们将绵羊暴露在环境温度变化的环境中(Env 1:约 15°C,Env 2:约 25°C,Env 3:约 40°C,Env 4:约 40°C+红外线辐射),同时测量颈动脉(T(car))和颈静脉(T(jug))血液温度,以及大脑(T(brain))和直肠(T(rec))温度。REHL 随环境温度显著增加,从 Env 1 的 18.4±4.5 W 增加到 Env 4 的 79.5±12.6 W(P<10(-6))。尽管环境对 T(car)(P=0.7)或 T(jug)(P=0.09)没有影响,但它们之间的差异(T(a-v)=T(car)-T(jug))从 Env 1 到 Env 2 增加(P=0.04),从 Env 3 到 Env 4 增加(P=0.008)。T(a-v)在 Env 4 时达到最大值 0.7±0.2°C,并且在整个环境中与 REHL 呈正相关(r(2)=0.78,F=34.7,P<10(-3))。从 Env 2 到 Env 3 时,计算出的颅血流量仅发生变化(P=0.002)。当干燥热损失减少时,REHL 的增加维持了体温恒定性。虽然 REHL 可以在不产生 T(a-v)增加的情况下增加,但任何 T(a-v)的增加总是与 REHL 的增加相关。我们得出结论,颅 T(a-v)为喘气动物的 REHL 提供了有用的信息。