Suppr超能文献

通过时间非局部正则化从少投影数据进行4D计算机断层扫描重建

4D computed tomography reconstruction from few-projection data via temporal non-local regularization.

作者信息

Jia Xun, Lou Yifei, Dong Bin, Tian Zhen, Jiang Steve

机构信息

Department of Radiation Oncology, University of California, San Diego, La Jolla, CA 92037-0843, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):143-50. doi: 10.1007/978-3-642-15705-9_18.

Abstract

4D computed tomography (4D-CT) is an important modality in medical imaging due to its ability to resolve patient anatomy motion in each respiratory phase. Conventionally 4D-CT is accomplished by performing the reconstruction for each phase independently as in a CT reconstruction problem. We propose a new 4D-CT reconstruction algorithm that explicitly takes into account the temporal regularization in a non-local fashion. By imposing a regularization of a temporal non-local means (TNLM) form, 4D-CT images at all phases can be reconstructed simultaneously based on extremely under-sampled x-ray projections. Our algorithm is validated in one digital NCAT thorax phantom and two real patient cases. It is found that our TNLM algorithm is capable of reconstructing the 4D-CT images with great accuracy. The experiments also show that our approach outperforms standard 4D-CT reconstruction methods with spatial regularization of total variation or tight frames.

摘要

四维计算机断层扫描(4D-CT)是医学成像中的一种重要模态,因为它能够解析每个呼吸阶段的患者解剖结构运动。传统上,4D-CT是通过像在CT重建问题中那样独立地对每个阶段进行重建来完成的。我们提出了一种新的4D-CT重建算法,该算法以非局部方式明确考虑了时间正则化。通过施加时间非局部均值(TNLM)形式的正则化,可以基于极度欠采样的x射线投影同时重建所有阶段的4D-CT图像。我们的算法在一个数字NCAT胸部模型和两个真实患者病例中得到了验证。结果发现,我们的TNLM算法能够高精度地重建4D-CT图像。实验还表明,我们的方法优于具有总变差或紧框架空间正则化的标准4D-CT重建方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验