Suppr超能文献

基于二维透视图像运动学习的电影锥形束 CT 主成分重建(PCR)。

Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA.

Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, 215316, China.

出版信息

Med Phys. 2018 Jan;45(1):167-177. doi: 10.1002/mp.12671. Epub 2017 Dec 11.

Abstract

PURPOSE

This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images.

METHODS

In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers.

RESULTS

The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT.

CONCLUSION

With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components.

摘要

目的

本研究旨在基于一种新颖的基于运动学习的主成分重建(PCR)技术,从二维透视训练图像中生成具有高时间分辨率的电影 CT 图像(即 4D 图像)。

方法

在所提出的 PCR 方法中,矩阵分解被用作 4D 图像的显式低秩正则化,4D 图像表示为空间主成分和时间运动系数的乘积。PCR 的关键假设是,4D 图像的时间系数可以通过从二维透视训练投影中学习的时间系数来合理逼近。为此,我们可以在固定的龙门角度下获取几个呼吸周期的透视训练投影,这些投影不受由于龙门旋转引起的几何变形的影响,即基于透视的运动学习。这种训练投影可以有效地描述呼吸运动。可以从这些训练投影中提取时间系数,并将其用作 PCR 的先验,即使从训练投影中提取的主成分对于要重建的这些 4D 图像肯定不相同。为此,使用用于投影-bin 的相同实时呼吸位置间隔来使训练数据与重建数据同步。在图像重建方面,利用先验时间系数,PCR 的数据保真度从非线性变为线性,因此 PCR 方法是稳健的,可以有效地解决。PCR 被表述为具有施加于 4D 图像相位的关于空间主成分的线性数据保真度的和以及时空总变差正则化的凸优化问题。PCR 的求解算法是基于交替方向乘子法开发的。

结果

该实现完全在 NVIDIA CUDA 工具包上的 GPU 上进行了并行化,每次重建大约需要几分钟。使用基于机载锥形束 CT 设置的模拟和实验数据,对所提出的 PCR 方法进行了验证,并与最先进的方法,即 PICCS 进行了比较。结果证明了 PCR 用于电影 CBCT 的可行性,并显著提高了电影 CBCT 中从 PICCS 获得的 PCR 的重建质量。

结论

使用透视训练投影中预先估计的时间运动系数,PCR 方法可以准确重建空间主成分,然后生成作为时间运动系数和空间主成分的乘积的电影 CT 图像。

相似文献

2
High-quality initial image-guided 4D CBCT reconstruction.高质量的初始图像引导 4D CBCT 重建。
Med Phys. 2020 Jun;47(5):2099-2115. doi: 10.1002/mp.14060. Epub 2020 Mar 13.

引用本文的文献

本文引用的文献

9
Registration-based reconstruction of four-dimensional cone beam computed tomography.基于配准的四维锥形束 CT 重建。
IEEE Trans Med Imaging. 2013 Nov;32(11):2064-77. doi: 10.1109/TMI.2013.2272882. Epub 2013 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验