Suppr超能文献

使用马尔可夫随机场对动态心脏灌注图像进行联合配准和分割

Joint registration and segmentation of dynamic cardiac perfusion images using MRFs.

作者信息

Mahapatra Dwarikanath, Sun Ying

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):493-501. doi: 10.1007/978-3-642-15705-9_60.

Abstract

In this paper we propose a Markov random field (MRF) based method for joint registration and segmentation of cardiac perfusion images, specifically the left ventricle (LV). MRFs are suitable for discrete labeling problems and the labels are defined as the joint occurrence of displacement vectors (for registration) and segmentation class. The data penalty is a combination of gradient information and mutual dependency of registration and segmentation information. The smoothness cost is a function of the interaction between the defined labels. Thus, the mutual dependency of registration and segmentation is captured in the objective function. Sub-pixel precision in registration and segmentation and a reduction in computation time are achieved by using a multiscale graph cut technique. The LV is first rigidly registered before applying our method. The method was tested on multiple real patient cardiac perfusion datasets having elastic deformations, intensity change, and poor contrast between LV and the myocardium. Compared to MRF based registration and graph cut segmentation, our method shows superior performance by including mutually beneficial registration and segmentation information.

摘要

在本文中,我们提出了一种基于马尔可夫随机场(MRF)的方法,用于心脏灌注图像(特别是左心室(LV))的联合配准和分割。马尔可夫随机场适用于离散标记问题,标记被定义为位移向量(用于配准)和分割类别共同出现的情况。数据惩罚是梯度信息以及配准和分割信息相互依赖性的组合。平滑代价是所定义标记之间相互作用的函数。因此,配准和分割的相互依赖性被纳入目标函数中。通过使用多尺度图割技术,实现了配准和分割的亚像素精度以及计算时间的减少。在应用我们的方法之前,先对左心室进行刚性配准。该方法在多个具有弹性变形、强度变化以及左心室与心肌之间对比度差的真实患者心脏灌注数据集上进行了测试。与基于马尔可夫随机场的配准和图割分割相比,我们的方法通过纳入互利的配准和分割信息表现出了卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验