Suppr超能文献

深度图谱:图像配准与分割的联合半监督学习

DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation.

作者信息

Xu Zhenlin, Niethammer Marc

机构信息

University of North Carolina, Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11765:420-429. doi: 10.1007/978-3-030-32245-8_47. Epub 2019 Oct 10.

Abstract

Deep convolutional neural networks (CNNs) are state-of-the-art for semantic image segmentation, but typically require many labeled training samples. Obtaining 3D segmentations of medical images for supervised training is difficult and labor intensive. Motivated by classical approaches for joint segmentation and registration we therefore propose a deep learning framework that jointly learns networks for image registration and image segmentation. In contrast to previous work on deep unsupervised image registration, which showed the benefit of weak supervision via image segmentations, our approach can use existing segmentations when available and computes them via the segmentation network otherwise, thereby providing the same registration benefit. Conversely, segmentation network training benefits from the registration, which essentially provides a realistic form of data augmentation. Experiments on knee and brain 3D magnetic resonance (MR) images show that our approach achieves large simultaneous improvements of segmentation and registration accuracy (over independently trained networks) and allows training high-quality models with very limited training data. Specifically, in a one-shot-scenario (with only one manually labeled image) our approach increases Dice scores (%) over an unsupervised registration network by 2.7 and 1.8 on the knee and brain images respectively.

摘要

深度卷积神经网络(CNN)在语义图像分割方面处于领先水平,但通常需要大量带标签的训练样本。获取用于监督训练的医学图像的3D分割很困难且耗费人力。因此,受联合分割和配准的经典方法启发,我们提出了一个深度学习框架,该框架联合学习用于图像配准和图像分割的网络。与先前关于深度无监督图像配准的工作不同,先前的工作通过图像分割展示了弱监督的好处,我们的方法在有可用的现有分割时可以使用它们,否则通过分割网络计算分割,从而提供相同的配准优势。相反,分割网络的训练受益于配准,配准本质上提供了一种现实的数据增强形式。在膝盖和大脑的3D磁共振(MR)图像上的实验表明,我们的方法在分割和配准精度方面实现了大幅同步提升(相对于独立训练的网络),并且能够使用非常有限的训练数据训练高质量模型。具体而言,在单样本场景(仅一张手动标注的图像)中,我们的方法在膝盖和大脑图像上分别比无监督配准网络的骰子系数得分(%)提高了2.7和1.8。

相似文献

1
DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation.
Med Image Comput Comput Assist Interv. 2019 Oct;11765:420-429. doi: 10.1007/978-3-030-32245-8_47. Epub 2019 Oct 10.
2
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.
3
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
Comput Methods Programs Biomed. 2020 Jun;189:105328. doi: 10.1016/j.cmpb.2020.105328. Epub 2020 Jan 11.
4
MR to ultrasound image registration with segmentation-based learning for HDR prostate brachytherapy.
Med Phys. 2021 Jun;48(6):3074-3083. doi: 10.1002/mp.14901. Epub 2021 May 14.
5
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
6
Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.
Int J Comput Assist Radiol Surg. 2022 Apr;17(4):699-710. doi: 10.1007/s11548-022-02577-4. Epub 2022 Mar 3.
7
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.
8
SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:885-888. doi: 10.1109/ISBI.2018.8363713. Epub 2018 May 24.
9
Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
Med Phys. 2021 Jul;48(7):3860-3877. doi: 10.1002/mp.14903. Epub 2021 May 28.
10
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.

引用本文的文献

2
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.
3
4
Shape-aware Segmentation of the Placenta in BOLD Fetal MRI Time Series.
J Mach Learn Biomed Imaging. 2023 Dec;2(PIPPI 2022):527-546. doi: 10.59275/j.melba.2023-g3f8.
5
Deep coupled registration and segmentation of multimodal whole-brain images.
Bioinformatics. 2024 Nov 1;40(11). doi: 10.1093/bioinformatics/btae606.
6
Anatomical Data Augmentation via Fluid-based Image Registration.
Med Image Comput Comput Assist Interv. 2020 Oct;12263:318-328. doi: 10.1007/978-3-030-59716-0_31. Epub 2020 Sep 29.
7
VOTENET++: REGISTRATION REFINEMENT FOR MULTI-ATLAS SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:275-279. doi: 10.1109/isbi48211.2021.9434031. Epub 2021 May 25.
10
Unsupervised deep learning registration model for multimodal brain images.
J Appl Clin Med Phys. 2023 Nov;24(11):e14177. doi: 10.1002/acm2.14177. Epub 2023 Oct 12.

本文引用的文献

1
VoxelMorph: A Learning Framework for Deformable Medical Image Registration.
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
3
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
4
Quicksilver: Fast predictive image registration - A deep learning approach.
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
5
101 labeled brain images and a consistent human cortical labeling protocol.
Front Neurosci. 2012 Dec 5;6:171. doi: 10.3389/fnins.2012.00171. eCollection 2012.
6
Joint registration and segmentation of dynamic cardiac perfusion images using MRFs.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):493-501. doi: 10.1007/978-3-642-15705-9_60.
7
A Bayesian model for joint segmentation and registration.
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
8
A variational framework for integrating segmentation and registration through active contours.
Med Image Anal. 2003 Jun;7(2):171-85. doi: 10.1016/s1361-8415(03)00004-5.
9
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验