Suppr超能文献

用于扩散张量成像(DTI)纤维束统计的多元可变系数模型。

Multivariate varying coefficient models for DTI tract statistics.

作者信息

Zhu Hongtu, Styner Martin, Li Yimei, Kong Linglong, Shi Yundi, Lin Weili, Coe Christopher, Gilmore John H

机构信息

Department of Biostatistics, Radiology, Psychiatry and Computer Science, and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):690-7. doi: 10.1007/978-3-642-15705-9_84.

Abstract

Diffusion tensor imaging (DTI) is important for characterizing the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. There has been extensive interest in the analysis of diffusion properties measured along fiber tracts as a function of age, diagnostic status, and gender, while controlling for other clinical variables. However, the existing methods have several limitations including the independent analysis of diffusion properties, a lack of method for accounting for multiple covariates, and a lack of formal statistical inference, such as estimation theory and hypothesis testing. This paper presents a statistical framework, called VCMTS, to specifically address these limitations. The VCMTS framework consists of four integrated components: a varying coefficient model for characterizing the association between fiber bundle diffusion properties and a set of covariates, the local polynomial kernel method for estimating smoothed multiple diffusion properties along individual fiber bundles, global and local test statistics for testing hypotheses of interest along fiber tracts, and a resampling method for approximating the p-value of the global test statistic. The proposed methodology is applied to characterizing the development of four diffusion properties along the splenium and genu of the corpus callosum tract in a study of neurodevelopment in healthy rhesus monkeys. Significant time effects on the four diffusion properties were found.

摘要

扩散张量成像(DTI)对于在体内表征白质纤维束的结构以及沿这些纤维束的详细组织特性非常重要。在控制其他临床变量的同时,人们对分析沿纤维束测量的扩散特性作为年龄、诊断状态和性别的函数产生了广泛兴趣。然而,现有方法存在几个局限性,包括对扩散特性的独立分析、缺乏考虑多个协变量的方法以及缺乏正式的统计推断,如估计理论和假设检验。本文提出了一个名为VCMTS的统计框架,以专门解决这些局限性。VCMTS框架由四个集成组件组成:用于表征纤维束扩散特性与一组协变量之间关联的变系数模型、用于估计沿单个纤维束的平滑多个扩散特性的局部多项式核方法、用于检验沿纤维束感兴趣假设的全局和局部检验统计量,以及用于近似全局检验统计量p值的重采样方法。在一项健康恒河猴神经发育研究中,所提出的方法被应用于表征沿胼胝体束的压部和膝部的四种扩散特性的发展。发现了对这四种扩散特性的显著时间效应。

相似文献

1
Multivariate varying coefficient models for DTI tract statistics.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):690-7. doi: 10.1007/978-3-642-15705-9_84.
2
FRATS: Functional Regression Analysis of DTI Tract Statistics.
IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49. doi: 10.1109/TMI.2010.2040625. Epub 2010 Mar 22.
3
A longitudinal functional analysis framework for analysis of white matter tract statistics.
Inf Process Med Imaging. 2013;23:220-31. doi: 10.1007/978-3-642-38868-2_19.
4
Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):674-81. doi: 10.1007/978-3-642-15705-9_82.
5
A novel white matter fibre tracking algorithm using probabilistic tractography and average curves.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):666-73. doi: 10.1007/978-3-642-15705-9_81.
6
Semiparametric Bayesian local functional models for diffusion tensor tract statistics.
Neuroimage. 2012 Oct 15;63(1):460-74. doi: 10.1016/j.neuroimage.2012.06.027. Epub 2012 Jun 23.
7
Characterization of anatomic fiber bundles for diffusion tensor image analysis.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.
8
Model-free, regularized, fast, and robust analytical orientation distribution function estimation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):648-56. doi: 10.1007/978-3-642-15705-9_79.
9
Joint fractional segmentation and multi-tensor estimation in diffusion MRI.
Inf Process Med Imaging. 2013;23:340-51. doi: 10.1007/978-3-642-38868-2_29.
10
Belief propagation based segmentation of white matter tracts in DTI.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):943-50. doi: 10.1007/978-3-642-04268-3_116.

引用本文的文献

3
(TS)WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients.
Neuroimage. 2020 Dec;223:117368. doi: 10.1016/j.neuroimage.2020.117368. Epub 2020 Sep 12.
4
3D tract-specific local and global analysis of white matter integrity in Alzheimer's disease.
Hum Brain Mapp. 2017 Mar;38(3):1191-1207. doi: 10.1002/hbm.23448. Epub 2016 Nov 24.
5
Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.
Med Image Anal. 2016 May;30:72-84. doi: 10.1016/j.media.2015.12.007. Epub 2016 Jan 15.
6
FADTTS: functional analysis of diffusion tensor tract statistics.
Neuroimage. 2011 Jun 1;56(3):1412-25. doi: 10.1016/j.neuroimage.2011.01.075. Epub 2011 Feb 16.

本文引用的文献

1
Constrained data decomposition and regression for analyzing healthy aging from fiber tract diffusion properties.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):321-8. doi: 10.1007/978-3-642-04268-3_40.
2
FRATS: Functional Regression Analysis of DTI Tract Statistics.
IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49. doi: 10.1109/TMI.2010.2040625. Epub 2010 Mar 22.
3
On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods.
Neuroimage. 2009 Jul 1;46(3):692-707. doi: 10.1016/j.neuroimage.2009.02.032. Epub 2009 Mar 5.
4
Tract-based morphometry for white matter group analysis.
Neuroimage. 2009 Apr 15;45(3):832-44. doi: 10.1016/j.neuroimage.2008.12.023. Epub 2008 Dec 25.
5
Group analysis of DTI fiber tract statistics with application to neurodevelopment.
Neuroimage. 2009 Mar;45(1 Suppl):S133-42. doi: 10.1016/j.neuroimage.2008.10.060. Epub 2008 Nov 14.
6
Statistical Methods with Varying Coefficient Models.
Stat Interface. 2008;1(1):179-195. doi: 10.4310/sii.2008.v1.n1.a15.
7
Structure-specific statistical mapping of white matter tracts.
Neuroimage. 2008 Jun;41(2):448-61. doi: 10.1016/j.neuroimage.2008.01.013. Epub 2008 Jan 26.
8
Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment.
Neuroimage. 2007 Jan 1;34(1):243-52. doi: 10.1016/j.neuroimage.2006.07.021. Epub 2006 Oct 27.
9
Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.
Neuroimage. 2006 Jul 15;31(4):1487-505. doi: 10.1016/j.neuroimage.2006.02.024. Epub 2006 Apr 19.
10
Diffusion tensor imaging of neurodevelopment in children and young adults.
Neuroimage. 2005 Jul 15;26(4):1164-73. doi: 10.1016/j.neuroimage.2005.03.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验