Menze Bjoern H, Van Leemput Koen, Lashkari Danial, Weber Marc-André, Ayache Nicholas, Golland Polina
1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):151-9. doi: 10.1007/978-3-642-15745-5_19.
We introduce a generative probabilistic model for segmentation of tumors in multi-dimensional images. The model allows for different tumor boundaries in each channel, reflecting difference in tumor appearance across modalities. We augment a probabilistic atlas of healthy tissue priors with a latent atlas of the lesion and derive the estimation algorithm to extract tumor boundaries and the latent atlas from the image data. We present experiments on 25 glioma patient data sets, demonstrating significant improvement over the traditional multivariate tumor segmentation.
我们介绍了一种用于多维度图像中肿瘤分割的生成概率模型。该模型允许每个通道中有不同的肿瘤边界,反映了跨模态肿瘤外观的差异。我们用病变的潜在图谱增强健康组织先验的概率图谱,并推导估计算法以从图像数据中提取肿瘤边界和潜在图谱。我们展示了对25个神经胶质瘤患者数据集的实验,证明相对于传统的多变量肿瘤分割有显著改进。