Suppr超能文献

低秩来救援——存在病变时基于图谱的分析

Low-rank to the rescue - atlas-based analyses in the presence of pathologies.

作者信息

Liu Xiaoxiao, Niethammer Marc, Kwitt Roland, McCormick Matthew, Aylward Stephen

出版信息

Med Image Comput Comput Assist Interv. 2014;17(Pt 3):97-104. doi: 10.1007/978-3-319-10443-0_13.

Abstract

Low-rank image decomposition has the potential to address a broad range of challenges that routinely occur in clinical practice. Its novelty and utility in the context of atlas-based analysis stems from its ability to handle images containing large pathologies and large deformations. Potential applications include atlas-based tissue segmentation and unbiased atlas building from data containing pathologies. In this paper we present atlas-based tissue segmentation of MRI from patients with large pathologies. Specifically, a healthy brain atlas is registered with the low-rank components from the input MRIs, the low-rank components are then re-computed based on those registrations, and the process is then iteratively repeated. Preliminary evaluations are conducted using the brain tumor segmentation challenge data (BRATS '12).

摘要

低秩图像分解有潜力应对临床实践中经常出现的一系列广泛挑战。它在基于图谱的分析背景下的新颖性和实用性源于其处理包含大病变和大变形图像的能力。潜在应用包括基于图谱的组织分割以及从包含病变的数据构建无偏图谱。在本文中,我们展示了对患有大病变患者的MRI进行基于图谱的组织分割。具体而言,将一个健康脑图谱与输入MRI的低秩分量进行配准,然后基于这些配准重新计算低秩分量,并迭代重复该过程。使用脑肿瘤分割挑战数据(BRATS '12)进行了初步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cede/4857018/c566ec4bcf54/nihms782428f1.jpg

相似文献

1
Low-rank to the rescue - atlas-based analyses in the presence of pathologies.低秩来救援——存在病变时基于图谱的分析
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):97-104. doi: 10.1007/978-3-319-10443-0_13.
2
A generative model for brain tumor segmentation in multi-modal images.一种用于多模态图像中脑肿瘤分割的生成模型。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):151-9. doi: 10.1007/978-3-642-15745-5_19.
4
Combining generative models for multifocal glioma segmentation and registration.用于多灶性胶质瘤分割与配准的生成模型融合
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):763-70. doi: 10.1007/978-3-319-10404-1_95.
6
Groupwise segmentation with multi-atlas joint label fusion.基于多图谱联合标签融合的分组分割
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):711-8. doi: 10.1007/978-3-642-40811-3_89.
7
Statistical and topological atlas based brain image segmentation.基于统计和拓扑图谱的脑图像分割
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):94-101. doi: 10.1007/978-3-540-75757-3_12.
8
Multi-atlas segmentation without registration: a supervoxel-based approach.无需配准的多图谱分割:一种基于超体素的方法。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):535-42. doi: 10.1007/978-3-642-40760-4_67.
9
Deformable atlas for multi-structure segmentation.用于多结构分割的可变形图谱
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93.

引用本文的文献

1
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
5
Multi-Atlas Segmentation of MR Tumor Brain Images Using Low-Rank Based Image Recovery.基于低秩的 MR 肿瘤脑图像多图谱分割。
IEEE Trans Med Imaging. 2018 Oct;37(10):2224-2235. doi: 10.1109/TMI.2018.2824243. Epub 2018 Apr 6.
7
A Segmentation Editing Framework Based on Shape Change Statistics.一种基于形状变化统计的分割编辑框架。
Proc SPIE Int Soc Opt Eng. 2017;10133. doi: 10.1117/12.2250023. Epub 2017 Feb 24.
8
Groupwise registration of MR brain images with tumors.带有肿瘤的磁共振脑图像的逐组配准。
Phys Med Biol. 2017 Aug 4;62(17):6853-6868. doi: 10.1088/1361-6560/aa7c41.
9
Modeling 4D Pathological Changes by Leveraging Normative Models.利用规范模型对4D病理变化进行建模。
Comput Vis Image Underst. 2016 Oct;151:3-13. doi: 10.1016/j.cviu.2016.01.007.
10
Voxelwise atlas rating for computer assisted diagnosis: Application to congenital heart diseases of the great arteries.
Med Image Anal. 2015 Dec;26(1):185-94. doi: 10.1016/j.media.2015.09.001. Epub 2015 Sep 16.

本文引用的文献

4
Geometric metamorphosis.几何变形
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):639-46. doi: 10.1007/978-3-642-23629-7_78.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验