Suppr超能文献

通过对图谱先验进行特定于个体的修改实现脑肿瘤自动分割。

Automatic brain tumor segmentation by subject specific modification of atlas priors.

作者信息

Prastawa Marcel, Bullitt Elizabeth, Moon Nathan, Van Leemput Koen, Gerig Guido

机构信息

Department of Computer Science, CB #3175, Sitterson Hall, Chapel Hill, NC 27599, USA.

出版信息

Acad Radiol. 2003 Dec;10(12):1341-8. doi: 10.1016/s1076-6332(03)00506-3.

Abstract

RATIONALE AND OBJECTIVES

Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. An automated system has been developed for brain tumor segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments white matter, grey matter, cerebrospinal fluid, and edema. The segmentation of pathology and healthy structures is crucial for surgical planning and intervention.

MATERIALS AND METHODS

The method performs the segmentation of a registered set of magnetic resonance images using an expectation-maximization scheme. The segmentation is guided by a spatial probabilistic atlas that contains expert prior knowledge about brain structures. This atlas is modified with the subject-specific brain tumor prior that is computed based on contrast enhancement.

RESULTS

Five cases with different types of tumors are selected for evaluation. The results obtained from the automatic segmentation program are compared with results from manual and semi-automated methods. The automated method yields results that have surface distances at roughly 1-4 mm compared with the manual results.

CONCLUSION

The automated method can be applied to different types of tumors. Although its performance is below that of the semi-automated method, it has the advantage of requiring no user supervision.

摘要

原理与目标

从磁共振图像中手动分割脑肿瘤是一项具有挑战性且耗时的任务。已开发出一种用于脑肿瘤分割的自动化系统,该系统将提供接近手动分割结果的客观、可重复的分割。此外,该方法还能分割白质、灰质、脑脊液和水肿。病理结构和健康结构的分割对于手术规划和干预至关重要。

材料与方法

该方法使用期望最大化方案对一组配准的磁共振图像进行分割。分割由一个空间概率图谱引导,该图谱包含有关脑结构的专家先验知识。此图谱会根据基于对比度增强计算出的特定个体脑肿瘤先验进行修改。

结果

选择5例不同类型肿瘤的病例进行评估。将自动分割程序得到的结果与手动和半自动方法的结果进行比较。与手动结果相比,自动方法得到的结果表面距离约为1 - 4毫米。

结论

该自动方法可应用于不同类型的肿瘤。虽然其性能低于半自动方法,但具有无需用户监督的优点。

相似文献

1
Automatic brain tumor segmentation by subject specific modification of atlas priors.
Acad Radiol. 2003 Dec;10(12):1341-8. doi: 10.1016/s1076-6332(03)00506-3.
2
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging.
Cancer Imaging. 2015 Aug 14;15(1):12. doi: 10.1186/s40644-015-0047-z.
3
Semi-automated brain tumor and edema segmentation using MRI.
Eur J Radiol. 2005 Oct;56(1):12-9. doi: 10.1016/j.ejrad.2005.03.028.
4
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
7
Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded.
PLoS One. 2016 Nov 2;11(11):e0165302. doi: 10.1371/journal.pone.0165302. eCollection 2016.

引用本文的文献

2
Performance Improvement in Brain Tumor Detection in MRI Images Using a Combination of Evolutionary Algorithms and Active Contour Method.
J Digit Imaging. 2021 Oct;34(5):1209-1224. doi: 10.1007/s10278-021-00514-6. Epub 2021 Sep 24.
4
Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus.
PLoS One. 2020 Oct 22;15(10):e0235877. doi: 10.1371/journal.pone.0235877. eCollection 2020.
5
BraTS Toolkit: Translating BraTS Brain Tumor Segmentation Algorithms Into Clinical and Scientific Practice.
Front Neurosci. 2020 Apr 29;14:125. doi: 10.3389/fnins.2020.00125. eCollection 2020.
6
A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning.
Med Image Anal. 2019 May;54:220-237. doi: 10.1016/j.media.2019.03.005. Epub 2019 Mar 22.
7
Demystification of AI-driven medical image interpretation: past, present and future.
Eur Radiol. 2019 Mar;29(3):1616-1624. doi: 10.1007/s00330-018-5674-x. Epub 2018 Aug 13.
9
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.
10
MONITORING SLOWLY EVOLVING TUMORS.
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:812-815. doi: 10.1109/ISBI.2008.4541120. Epub 2008 Jun 13.

本文引用的文献

1
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
2
Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images.
IEEE Trans Med Imaging. 1995;14(3):442-53. doi: 10.1109/42.414608.
3
Measuring tortuosity of the intracerebral vasculature from MRA images.
IEEE Trans Med Imaging. 2003 Sep;22(9):1163-71. doi: 10.1109/TMI.2003.816964.
4
Automated segmentation of multiple sclerosis lesions by model outlier detection.
IEEE Trans Med Imaging. 2001 Aug;20(8):677-88. doi: 10.1109/42.938237.
5
Automated model-based tissue classification of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):897-908. doi: 10.1109/42.811270.
6
Automated model-based bias field correction of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):885-96. doi: 10.1109/42.811268.
7
Multimodality image registration by maximization of mutual information.
IEEE Trans Med Imaging. 1997 Apr;16(2):187-98. doi: 10.1109/42.563664.
8
Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions.
J Image Guid Surg. 1995;1(6):326-38. doi: 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C.
9
Improved intracranial lesion characterization by tissue segmentation based on a 3D feature map.
Magn Reson Med. 1997 Mar;37(3):457-69. doi: 10.1002/mrm.1910370325.
10
Tumour volume determination from MR images by morphological segmentation.
Phys Med Biol. 1996 Nov;41(11):2437-46. doi: 10.1088/0031-9155/41/11/014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验