Suppr超能文献

用于图像引导手术的运动补偿同步定位与地图构建

Motion compensated SLAM for image guided surgery.

作者信息

Mountney Peter, Yang Guang-Zhong

机构信息

Department of Computing and Institute of Biomedical Engineering Imperial College, London SW7 2BZ, UK.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):496-504. doi: 10.1007/978-3-642-15745-5_61.

Abstract

The effectiveness and clinical benefits of image guided surgery are well established for procedures where there is manageable tissue motion. In minimally invasive cardiac, gastrointestinal, or abdominal surgery, large scale tissue deformation prohibits accurate registration and fusion of pre- and intraoperative data. Vision based techniques such as structure from motion and simultaneous localization and mapping are capable of recovering 3D structure and laparoscope motion. Current research in the area generally assumes the environment is static, which is difficult to satisfy in most surgical procedures. In this paper, a novel framework for simultaneous online estimation of laparoscopic camera motion and tissue deformation in a dynamic environment is proposed. The method only relies on images captured by the laparoscope to sequentially and incrementally generate a dynamic 3D map of tissue motion that can be co-registered with pre-operative data. The theoretical contribution of this paper is validated with both simulated and ex vivo data. The practical application of the technique is further demonstrated on in vivo procedures.

摘要

对于存在可控组织运动的手术,图像引导手术的有效性和临床益处已得到充分证实。在微创心脏、胃肠或腹部手术中,大规模的组织变形阻碍了术前和术中数据的精确配准与融合。基于视觉的技术,如运动结构和同步定位与地图构建,能够恢复三维结构和腹腔镜的运动。该领域目前的研究通常假定环境是静态的,而这在大多数外科手术中很难满足。本文提出了一种在动态环境中同时在线估计腹腔镜相机运动和组织变形的新框架。该方法仅依赖腹腔镜捕获的图像,依次并逐步生成可与术前数据进行配准的组织运动动态三维地图。本文的理论贡献通过模拟数据和离体数据得到了验证。该技术的实际应用在体内手术中得到了进一步证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验