Suppr超能文献

用于内镜光学活检的无标记纤维束的姿态估计

Pose estimation of a markerless fiber bundle for endoscopic optical biopsy.

作者信息

Zenteno Omar, Treuillet Sylvie, Lucas Yves

机构信息

Université d'Orléans, Laboratoire PRISME, Orléans, France.

出版信息

J Med Imaging (Bellingham). 2021 Mar;8(2):025001. doi: 10.1117/1.JMI.8.2.025001. Epub 2021 Mar 1.

Abstract

We present a markerless vision-based method for on-the-fly three-dimensional (3D) pose estimation of a fiberscope instrument to target pathologic areas in the endoscopic view during exploration. A 2.5-mm-diameter fiberscope is inserted through the endoscope's operating channel and connected to an additional camera to perform complementary observation of a targeted area such as a multimodal magnifier. The 3D pose of the fiberscope is estimated frame-by-frame by maximizing the similarity between its silhouette (automatically detected in the endoscopic view using a deep learning neural network) and a cylindrical shape bound to a kinematic model reduced to three degrees-of-freedom. An alignment of the cylinder axis, based on Plücker coordinates from the straight edges detected in the image, makes convergence faster and more reliable. The performance on simulations has been validated with a virtual trajectory mimicking endoscopic exploration and on real images of a chessboard pattern acquired with different endoscopic configurations. The experiments demonstrated a good accuracy and robustness of the proposed algorithm with errors of in distance position and in axis orientation for the 3D pose estimation, which reveals its superiority over previous approaches. This allows multimodal image registration with sufficient accuracy of . Our pose estimation pipeline was executed on simulations and patterns; the results demonstrate the robustness of our method and the potential of fiber-optical instrument image-based tracking for pose estimation and multimodal registration. It can be fully implemented in software and therefore easily integrated into a routine clinical environment.

摘要

我们提出了一种基于无标记视觉的方法,用于在探索过程中实时估计纤维内镜器械的三维(3D)姿态,以在内窥镜视图中定位病理区域。将直径2.5毫米的纤维内镜通过内窥镜的操作通道插入,并连接到一个额外的摄像头,以对诸如多模态放大镜等目标区域进行补充观察。通过最大化纤维内镜轮廓(使用深度学习神经网络在内窥镜视图中自动检测)与绑定到简化为三个自由度的运动学模型的圆柱形状之间的相似度,逐帧估计纤维内镜的3D姿态。基于从图像中检测到的直线边缘的普吕克坐标对圆柱轴进行对齐,可使收敛更快、更可靠。通过模拟内窥镜探索的虚拟轨迹以及使用不同内窥镜配置获取的棋盘图案的真实图像,验证了该方法在模拟中的性能。实验表明,所提出算法具有良好的准确性和鲁棒性,3D姿态估计的距离位置误差和轴方向误差分别为 ,这表明其优于先前的方法。这允许以足够的精度 进行多模态图像配准。我们的姿态估计流程在模拟和图案上执行;结果证明了我们方法的鲁棒性以及基于光纤器械图像的跟踪在姿态估计和多模态配准方面的潜力。它可以完全在软件中实现,因此很容易集成到常规临床环境中。

相似文献

1
Pose estimation of a markerless fiber bundle for endoscopic optical biopsy.
J Med Imaging (Bellingham). 2021 Mar;8(2):025001. doi: 10.1117/1.JMI.8.2.025001. Epub 2021 Mar 1.
2
Markerless tracking of micro-endoscope for optical biopsy in stomach.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4419-4422. doi: 10.1109/EMBC.2019.8857703.
3
Markerless registration for image-guided endoscopic retrograde cholangiopancreatography (ERCP).
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2932-5. doi: 10.1109/EMBC.2015.7319006.
4
Optical biopsy mapping on endoscopic image mosaics with a marker-free probe.
Comput Biol Med. 2022 Apr;143:105234. doi: 10.1016/j.compbiomed.2022.105234. Epub 2022 Jan 15.
5
A deep learning approach for pose estimation from volumetric OCT data.
Med Image Anal. 2018 May;46:162-179. doi: 10.1016/j.media.2018.03.002. Epub 2018 Mar 10.
6
Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
Med Image Anal. 2021 May;70:101994. doi: 10.1016/j.media.2021.101994. Epub 2021 Feb 7.
7
Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker.
Int J Comput Assist Radiol Surg. 2017 Jun;12(6):921-930. doi: 10.1007/s11548-017-1558-9. Epub 2017 Mar 24.
9
Markerless tracking for augmented reality for image-guided Endoscopic Retrograde Cholangiopancreatography.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7364-7. doi: 10.1109/EMBC.2013.6611259.

本文引用的文献

1
Object extraction via deep learning-based marker-free tracking framework of surgical instruments for laparoscope-holder robots.
Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1335-1345. doi: 10.1007/s11548-020-02214-y. Epub 2020 Jun 24.
2
Surgical spectral imaging.
Med Image Anal. 2020 Jul;63:101699. doi: 10.1016/j.media.2020.101699. Epub 2020 Apr 13.
3
Markerless tracking of micro-endoscope for optical biopsy in stomach.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4419-4422. doi: 10.1109/EMBC.2019.8857703.
4
5
SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
Comput Methods Programs Biomed. 2018 May;158:135-146. doi: 10.1016/j.cmpb.2018.02.006. Epub 2018 Feb 8.
6
Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):26-35. doi: 10.1080/24699322.2017.1378777. Epub 2017 Sep 22.
7
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
9
Vision-based and marker-less surgical tool detection and tracking: a review of the literature.
Med Image Anal. 2017 Jan;35:633-654. doi: 10.1016/j.media.2016.09.003. Epub 2016 Sep 13.
10
Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods.
Int J Comput Assist Radiol Surg. 2016 Dec;11(12):2185-2197. doi: 10.1007/s11548-016-1449-5. Epub 2016 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验