Suppr超能文献

实时腹腔镜图像非刚性拼接。

Real-Time Nonrigid Mosaicking of Laparoscopy Images.

出版信息

IEEE Trans Med Imaging. 2021 Jun;40(6):1726-1736. doi: 10.1109/TMI.2021.3065030. Epub 2021 Jun 1.

Abstract

The ability to extend the field of view of laparoscopy images can help the surgeons to obtain a better understanding of the anatomical context. However, due to tissue deformation, complex camera motion and significant three-dimensional (3D) anatomical surface, image pixels may have non-rigid deformation and traditional mosaicking methods cannot work robustly for laparoscopy images in real-time. To solve this problem, a novel two-dimensional (2D) non-rigid simultaneous localization and mapping (SLAM) system is proposed in this paper, which is able to compensate for the deformation of pixels and perform image mosaicking in real-time. The key algorithm of this 2D non-rigid SLAM system is the expectation maximization and dual quaternion (EMDQ) algorithm, which can generate smooth and dense deformation field from sparse and noisy image feature matches in real-time. An uncertainty-based loop closing method has been proposed to reduce the accumulative errors. To achieve real-time performance, both CPU and GPU parallel computation technologies are used for dense mosaicking of all pixels. Experimental results on in vivo and synthetic data demonstrate the feasibility and accuracy of our non-rigid mosaicking method.

摘要

腹腔镜图像视野扩展能力有助于外科医生更好地理解解剖结构。然而,由于组织变形、复杂的相机运动和显著的三维(3D)解剖表面,图像像素可能会发生非刚性变形,传统的拼接方法无法实时地为腹腔镜图像提供稳健的工作。为了解决这个问题,本文提出了一种新的二维(2D)非刚性同时定位与地图构建(SLAM)系统,能够补偿像素的变形并实时进行图像拼接。该 2D 非刚性 SLAM 系统的关键算法是期望最大化和对偶四元数(EMDQ)算法,它可以从稀疏且嘈杂的图像特征匹配中实时生成平滑且密集的变形场。提出了一种基于不确定性的闭环方法来减少累积误差。为了实现实时性能,使用 CPU 和 GPU 并行计算技术对所有像素进行密集拼接。体内和合成数据的实验结果证明了我们的非刚性拼接方法的可行性和准确性。

相似文献

1
Real-Time Nonrigid Mosaicking of Laparoscopy Images.实时腹腔镜图像非刚性拼接。
IEEE Trans Med Imaging. 2021 Jun;40(6):1726-1736. doi: 10.1109/TMI.2021.3065030. Epub 2021 Jun 1.
3
EMDQ: Removal of Image Feature Mismatches in Real-Time.EMDQ:实时去除图像特征不匹配
IEEE Trans Image Process. 2022;31:706-720. doi: 10.1109/TIP.2021.3134456. Epub 2021 Dec 28.
5
Real-Time Dense Reconstruction of Tissue Surface From Stereo Optical Video.实时从立体光学视频重建组织表面的稠密重建。
IEEE Trans Med Imaging. 2020 Feb;39(2):400-412. doi: 10.1109/TMI.2019.2927436. Epub 2019 Jul 8.
9
BDIS-SLAM: a lightweight CPU-based dense stereo SLAM for surgery.BDIS-SLAM:一种基于 CPU 的轻量级稠密立体手术 SLAM。
Int J Comput Assist Radiol Surg. 2024 May;19(5):811-820. doi: 10.1007/s11548-023-03055-1. Epub 2024 Jan 19.
10
Real-time video mosaicking to guide handheld in vivo microscopy.实时视频拼接以指导手持式体内显微镜检查。
J Biophotonics. 2020 Jun;13(6):e202000048. doi: 10.1002/jbio.202000048. Epub 2020 Apr 14.

引用本文的文献

本文引用的文献

1
Deep learning-based fetoscopic mosaicking for field-of-view expansion.基于深度学习的羊膜镜拼接技术,用于视野扩展。
Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1807-1816. doi: 10.1007/s11548-020-02242-8. Epub 2020 Aug 17.
2
Robust Mosaicing of Endomicroscopic Videos via Context-Weighted Correlation Ratio.基于上下文加权相关比的内窥视频稳健拼接。
IEEE Trans Biomed Eng. 2021 Feb;68(2):579-591. doi: 10.1109/TBME.2020.3007768. Epub 2021 Jan 20.
3
Image computing for fibre-bundle endomicroscopy: A review.纤维束内窥成像计算:综述。
Med Image Anal. 2020 May;62:101620. doi: 10.1016/j.media.2019.101620. Epub 2019 Dec 25.
4
Real-Time Dense Reconstruction of Tissue Surface From Stereo Optical Video.实时从立体光学视频重建组织表面的稠密重建。
IEEE Trans Med Imaging. 2020 Feb;39(2):400-412. doi: 10.1109/TMI.2019.2927436. Epub 2019 Jul 8.
5
Live Tracking and Dense Reconstruction for Handheld Monocular Endoscopy.手持单目内窥镜的实时跟踪和密集重建。
IEEE Trans Med Imaging. 2019 Jan;38(1):79-89. doi: 10.1109/TMI.2018.2856109. Epub 2018 Jul 13.
9
Hybrid tracking and mosaicking for information augmentation in retinal surgery.用于视网膜手术中信息增强的混合跟踪与拼接
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):397-404. doi: 10.1007/978-3-642-33415-3_49.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验