Suppr超能文献

非刚性配准中不确定性的总结与可视化

Summarizing and visualizing uncertainty in non-rigid registration.

作者信息

Risholm Petter, Pieper Steve, Samset Eigil, Wells William M

机构信息

Harvard Medical School, Brigham & Women's Hospital, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):554-61. doi: 10.1007/978-3-642-15745-5_68.

Abstract

Registration uncertainty may be important information to convey to a surgeon when surgical decisions are taken based on registered image data. However, conventional non-rigid registration methods only provide the most likely deformation. In this paper we show how to determine the registration uncertainty, as well as the most likely deformation, by using an elastic Bayesian registration framework that generates a dense posterior distribution on deformations. We model both the likelihood and the elastic prior on deformations with Boltzmann distributions and characterize the posterior with a Markov Chain Monte Carlo algorithm. We introduce methods that summarize the high-dimensional uncertainty information and show how these summaries can be visualized in a meaningful way. Based on a clinical neurosurgical dataset, we demonstrate the importance that uncertainty information could have on neurosurgical decision making.

摘要

当基于配准图像数据做出手术决策时,配准不确定性可能是需要传达给外科医生的重要信息。然而,传统的非刚性配准方法仅提供最可能的变形。在本文中,我们展示了如何通过使用弹性贝叶斯配准框架来确定配准不确定性以及最可能的变形,该框架在变形上生成密集的后验分布。我们用玻尔兹曼分布对变形的似然性和弹性先验进行建模,并用马尔可夫链蒙特卡罗算法对后验进行表征。我们介绍了总结高维不确定性信息的方法,并展示了如何以有意义的方式可视化这些总结。基于一个临床神经外科数据集,我们证明了不确定性信息在神经外科决策中的重要性。

相似文献

1
Summarizing and visualizing uncertainty in non-rigid registration.非刚性配准中不确定性的总结与可视化
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):554-61. doi: 10.1007/978-3-642-15745-5_68.
3
Dense registration with deformation priors.具有变形先验的密集配准。
Inf Process Med Imaging. 2009;21:540-51. doi: 10.1007/978-3-642-02498-6_45.
4
Non-rigid 2D-3D medical image registration using markov random fields.使用马尔可夫随机场的非刚性二维-三维医学图像配准
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):163-70. doi: 10.1007/978-3-642-40760-4_21.
6
Diffusion maps for multimodal registration.用于多模态配准的扩散映射
Sensors (Basel). 2014 Jun 16;14(6):10562-77. doi: 10.3390/s140610562.
10
Diffusion tensor image up-sampling: a registration-based approach.扩散张量图像上采样:基于配准的方法。
Magn Reson Imaging. 2010 Dec;28(10):1497-506. doi: 10.1016/j.mri.2010.06.018. Epub 2010 Sep 15.

引用本文的文献

7
Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification.用于贝叶斯配准不确定性量化的高效拉普拉斯近似
Med Image Comput Comput Assist Interv. 2018 Sep;11070:880-888. doi: 10.1007/978-3-030-00928-1_99. Epub 2018 Sep 26.
9
Automated white matter fiber tract identification in patients with brain tumors.脑肿瘤患者白质纤维束的自动识别
Neuroimage Clin. 2016 Nov 25;13:138-153. doi: 10.1016/j.nicl.2016.11.023. eCollection 2017.
10
Applications of Ultrasound in the Resection of Brain Tumors.超声在脑肿瘤切除术中的应用
J Neuroimaging. 2017 Jan;27(1):5-15. doi: 10.1111/jon.12382. Epub 2016 Aug 19.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验