Yanovsky Igor, Leow Alex D, Lee Suh, Osher Stanley J, Thompson Paul M
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
Med Image Anal. 2009 Oct;13(5):679-700. doi: 10.1016/j.media.2009.06.002. Epub 2009 Jun 24.
Measures of brain changes can be computed from sequential MRI scans, providing valuable information on disease progression for neuroscientific studies and clinical trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration models to detect changes in TBM, and their stability when no real changes are present. Specifically, we investigate an asymmetric version of a recently proposed Unbiased registration method, using mutual information as the matching criterion. We compare matching functionals (sum of squared differences and mutual information), as well as large-deformation registration schemes (viscous fluid and inverse-consistent linear elastic registration methods versus Symmetric and Asymmetric Unbiased registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration results when matching images corrupted with artificial noise. We demonstrated that the unbiased methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were also less likely to detect changes in the absence of any real physiological change. Moreover, they measured biological deformations more accurately by penalizing bias in the corresponding statistical maps.
脑变化的测量可以通过连续的磁共振成像(MRI)扫描来计算,为神经科学研究和临床试验提供有关疾病进展的有价值信息。基于张量的形态测量法(TBM)创建这些脑变化的图谱,直观显示组织生长或萎缩的三维轮廓和速率。在本文中,我们研究了不同的非刚性配准模型检测TBM变化的能力,以及在不存在实际变化时它们的稳定性。具体而言,我们研究了一种最近提出的无偏配准方法的不对称版本,使用互信息作为匹配标准。我们比较了匹配函数(平方差之和与互信息)以及大变形配准方案(粘性流体和逆一致线性弹性配准方法与对称和不对称无偏配准),用于检测10名老年正常受试者和10名阿尔茨海默病患者每隔2周和1年进行扫描的系列MRI扫描中的变化。我们还分析了匹配被人工噪声破坏的图像时的配准结果。我们证明,对称和不对称的无偏方法都具有更高的可重复性。无偏方法在没有任何实际生理变化的情况下也不太可能检测到变化。此外,它们通过惩罚相应统计图谱中的偏差更准确地测量生物变形。