Suppr超能文献

基于高斯过程回归的不确定异步分散运动插补。

Uncertainty-aware asynchronous scattered motion interpolation using Gaussian process regression.

机构信息

Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany; Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Department of Computer Science and Electrical Engineering, Jacobs University Bremen, Bremen, Germany.

Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany; Department of Computer Science and Electrical Engineering, Jacobs University Bremen, Bremen, Germany.

出版信息

Comput Med Imaging Graph. 2019 Mar;72:1-12. doi: 10.1016/j.compmedimag.2018.12.001. Epub 2018 Dec 21.

Abstract

We address the problem of interpolating randomly non-uniformly spatiotemporally scattered uncertain motion measurements, which arises in the context of soft tissue motion estimation. Soft tissue motion estimation is of great interest in the field of image-guided soft-tissue intervention and surgery navigation, because it enables the registration of pre-interventional/pre-operative navigation information on deformable soft-tissue organs. To formally define the measurements as spatiotemporally scattered motion signal samples, we propose a novel motion field representation. To perform the interpolation of the motion measurements in an uncertainty-aware optimal unbiased fashion, we devise a novel Gaussian process (GP) regression model with a non-constant-mean prior and an anisotropic covariance function and show through an extensive evaluation that it outperforms the state-of-the-art GP models that have been deployed previously for similar tasks. The employment of GP regression enables the quantification of uncertainty in the interpolation result, which would allow the amount of uncertainty present in the registered navigation information governing the decisions of the surgeon or intervention specialist to be conveyed.

摘要

我们解决了在软组织运动估计背景下出现的随机非均匀时空分散不确定运动测量值的内插问题。软组织运动估计在图像引导软组织干预和手术导航领域非常重要,因为它能够对可变形软组织器官的术前/导航信息进行配准。为了将测量值正式定义为时空分散的运动信号样本,我们提出了一种新的运动场表示方法。为了以不确定感知的最优无偏方式对运动测量值进行内插,我们设计了一种具有非恒定均值先验和各向异性协方差函数的新的高斯过程 (GP) 回归模型,并通过广泛的评估表明,它优于之前为类似任务部署的最先进的 GP 模型。GP 回归的使用能够量化插值结果中的不确定性,这将允许传达控制外科医生或干预专家决策的注册导航信息中存在的不确定性量。

相似文献

2
Gaussian process interpolation for uncertainty estimation in image registration.用于图像配准中不确定性估计的高斯过程插值
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):267-74. doi: 10.1007/978-3-319-10404-1_34.
6
Human motion tracking by temporal-spatial local gaussian process experts.基于时空局部高斯过程专家的人体运动跟踪。
IEEE Trans Image Process. 2011 Apr;20(4):1141-51. doi: 10.1109/TIP.2010.2076820. Epub 2010 Sep 16.
7
Contrast-guided image interpolation.对比度引导的图像插值。
IEEE Trans Image Process. 2013 Nov;22(11):4271-85. doi: 10.1109/TIP.2013.2271849. Epub 2013 Jul 3.
10
Motion estimation using Statistical Learning Theory.基于统计学习理论的运动估计
IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):466-78. doi: 10.1109/TPAMI.2004.1265862.

本文引用的文献

1
Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences.4D心脏超声序列的稳健时空配准
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9790. doi: 10.1117/12.2217005. Epub 2016 Apr 1.
3
Spatially varying registration using Gaussian processes.使用高斯过程的空间变化配准
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):413-20. doi: 10.1007/978-3-319-10470-6_52.
4
Gaussian process interpolation for uncertainty estimation in image registration.用于图像配准中不确定性估计的高斯过程插值
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):267-74. doi: 10.1007/978-3-319-10404-1_34.
5
Projector-based surgeon-computer interaction on deformable surfaces.基于投影仪的可变形表面的外科医生-计算机交互。
Int J Comput Assist Radiol Surg. 2014 Mar;9(2):301-12. doi: 10.1007/s11548-013-0928-1. Epub 2013 Jul 26.
6
Temporal sparse free-form deformations.时间稀疏自由形态变形。
Med Image Anal. 2013 Oct;17(7):779-89. doi: 10.1016/j.media.2013.04.010. Epub 2013 May 16.
7
Deformable medical image registration: a survey.可变形医学图像配准:综述。
IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90. doi: 10.1109/TMI.2013.2265603. Epub 2013 May 31.
8
Navigation in surgery.手术导航。
Langenbecks Arch Surg. 2013 Apr;398(4):501-14. doi: 10.1007/s00423-013-1059-4. Epub 2013 Feb 22.
10
Summarizing and visualizing uncertainty in non-rigid registration.非刚性配准中不确定性的总结与可视化
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):554-61. doi: 10.1007/978-3-642-15745-5_68.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验