Ross James C, San José Estépar Rail, Kindlmann Gordon, Díaz Alejandro, Westin Carl-Fredrik, Silverman Edwin K, Washko George R
Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):163-71. doi: 10.1007/978-3-642-15711-0_21.
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
我们提出了一种全自动肺叶分割算法,该算法在存在诸如不完全肺裂(指示肺叶边界的解剖结构)、晚期疾病状态、高体重指数(BMI)和低剂量扫描协议等混杂因素的高分辨率计算机断层扫描(CT)数据集中有效。与其他利用辅助结构(特别是血管和气道)分割的算法不同,我们仅依赖指示肺裂位置的图像特征。我们采用粒子系统对图像域进行采样,并提供一组候选肺裂位置。在此阶段之后,我们进行最大后验(MAP)估计以消除不佳的候选位置,然后执行后处理操作以去除剩余的噪声粒子。然后,我们将薄板样条(TPS)插值曲面拟合到肺裂粒子上,以形成最终的肺叶分割。结果表明,在一组具有挑战性的病例上,我们的算法与肺科医生生成的肺叶分割结果相当。