Suppr超能文献

外周蛋白生物标志物对预测间质特征事件的效用:一项多中心回顾性队列研究。

Utility of peripheral protein biomarkers for the prediction of incident interstitial features: a multicentre retrospective cohort study.

机构信息

Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, USA

Tufts University School of Medicine, Boston, Massachusetts, USA.

出版信息

BMJ Open Respir Res. 2024 Mar 14;11(1):e002219. doi: 10.1136/bmjresp-2023-002219.

Abstract

INTRODUCTION/RATIONALE: Protein biomarkers may help enable the prediction of incident interstitial features on chest CT.

METHODS

We identified which protein biomarkers in a cohort of smokers (COPDGene) differed between those with and without objectively measured interstitial features at baseline using a univariate screen (t-test false discovery rate, FDR p<0.001), and which of those were associated with interstitial features longitudinally (multivariable mixed effects model FDR p<0.05). To predict incident interstitial features, we trained four random forest classifiers in a two-thirds random subset of COPDGene: (1) imaging and demographic information, (2) univariate screen biomarkers, (3) multivariable confirmation biomarkers and (4) multivariable confirmation biomarkers available in a separate testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We evaluated classifier performance in the remaining one-third of COPDGene, and, for the final model, also in PLuSS.

RESULTS

In COPDGene, 1305 biomarkers were available and 20 differed between those with and without interstitial features at baseline. Of these, 11 were associated with feature progression over a mean of 5.5 years of follow-up, and of these 4 were available in PLuSS, (angiopoietin-2, matrix metalloproteinase 7, macrophage inflammatory protein 1 alpha) over a mean of 8.8 years of follow-up. The area under the curve (AUC) of classifiers using demographics and imaging features in COPDGene and PLuSS were 0.69 and 0.59, respectively. In COPDGene, the AUC of the univariate screen classifier was 0.78 and of the multivariable confirmation classifier was 0.76. The AUC of the final classifier in COPDGene was 0.75 and in PLuSS was 0.76. The outcome for all of the models was the development of incident interstitial features.

CONCLUSIONS

Multiple novel and previously identified proteomic biomarkers are associated with interstitial features on chest CT and may enable the prediction of incident interstitial diseases such as idiopathic pulmonary fibrosis.

摘要

介绍/原理:蛋白质生物标志物可能有助于预测胸部 CT 上的间质性特征。

方法

我们使用单变量筛选(t 检验错误发现率,FDR p<0.001)在一组吸烟者(COPDGene)中确定了哪些蛋白质生物标志物在基线时存在或不存在客观测量的间质性特征之间存在差异,以及哪些生物标志物与间质性特征存在纵向相关性(多变量混合效应模型 FDR p<0.05)。为了预测新的间质性特征,我们在 COPDGene 的三分之二随机子集中训练了四个随机森林分类器:(1)影像学和人口统计学信息,(2)单变量筛选生物标志物,(3)多变量确认生物标志物和(4)多变量确认生物标志物在单独的测试队列(匹兹堡肺筛查研究(PLuSS)中可用。我们在 COPDGene 的三分之一剩余部分中评估了分类器的性能,并且对于最终模型,也在 PLuSS 中进行了评估。

结果

在 COPDGene 中,有 1305 个生物标志物可用,并且 20 个生物标志物在基线时存在或不存在间质性特征之间存在差异。其中,11 个与特征进展有关,在平均 5.5 年的随访中,其中 4 个在 PLuSS 中(血管生成素-2、基质金属蛋白酶 7、巨噬细胞炎症蛋白 1 阿尔法),随访时间平均为 8.8 年。使用 COPDGene 和 PLuSS 中的人口统计学和影像学特征的分类器的曲线下面积(AUC)分别为 0.69 和 0.59。在 COPDGene 中,单变量筛选分类器的 AUC 为 0.78,多变量确认分类器的 AUC 为 0.76。COPDGene 中最终分类器的 AUC 为 0.75,PLuSS 中的 AUC 为 0.76。所有模型的结果都是新的间质性特征的发展。

结论

多个新的和以前确定的蛋白质组学生物标志物与胸部 CT 上的间质性特征相关,可能有助于预测特发性肺纤维化等新的间质性疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec8/10941119/1733c3d73180/bmjresp-2023-002219f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验