Suppr超能文献

基于流形学习的微分同胚形状表示的新型形态计量学分类方法。

Novel morphometric based classification via diffeomorphic based shape representation using manifold learning.

作者信息

Sparks Rachel, Madabhushi Anant

机构信息

Department of Biomedical Engineering, Rutgers University, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 3):658-65. doi: 10.1007/978-3-642-15711-0_82.

Abstract

Morphology of anatomical structures can provide important diagnostic information regarding disease. Implicit features of morphology, such as contour smoothness or perimeter-to-area ratio, have been used in the context of computerized decision support classifiers to aid disease diagnosis. These features are usually specific to the domain and application (e.g., margin irregularity is a predictor of malignant breast lesions on DCE-MRI). In this paper we present a framework for extracting Diffeomorphic Based Similarity (DBS) features to capture subtle morphometric differences between shapes that may not be captured by implicit features. Object morphology is represented using the medial axis model and objects are compared by determining correspondences between medial axis models using a cluster-based diffeomorphic registration scheme. To visualize and classify morphometric differences, a manifold learning scheme (Graph Embedding) is employed to identify nonlinear dependencies between medial axis model similarity and calculate DBS. We evaluated our DBS on two clinical problems discriminating: (a) different Gleason grades of prostate cancer using gland morphology on a set of 102 images, and (b) benign and malignant lesions on 44 breast DCE-MRI studies. Precision-recall curves demonstrate DBS features are better able to classify shapes belonging to the same class compared to implicit features. A support vector machine (SVM) classifier is trained to distinguish between different classes utilizing DBS. SVM accuracy was 83 +/- 4.47% for distinguishing benign from malignant lesions on breast DCE-MRI and over 80% in distinguishing between intermediate Gleason grades of prostate cancer on digitized histology.

摘要

解剖结构的形态学可以提供有关疾病的重要诊断信息。形态学的隐含特征,如轮廓平滑度或周长与面积比,已被用于计算机决策支持分类器的背景下,以辅助疾病诊断。这些特征通常特定于领域和应用(例如,边缘不规则是动态对比增强磁共振成像(DCE-MRI)上乳腺恶性病变的预测指标)。在本文中,我们提出了一个用于提取基于微分同胚相似性(DBS)特征的框架,以捕捉形状之间可能无法被隐含特征捕捉到的细微形态差异。使用中轴线模型来表示对象形态,并通过基于聚类的微分同胚配准方案确定中轴线模型之间的对应关系来比较对象。为了可视化和分类形态差异,采用了一种流形学习方案(图嵌入)来识别中轴线模型相似性之间的非线性依赖关系并计算DBS。我们在两个临床问题上评估了我们的DBS:(a)在一组102张图像上使用腺体形态区分前列腺癌的不同Gleason分级,以及(b)在44项乳腺DCE-MRI研究中区分良性和恶性病变。精确召回曲线表明,与隐含特征相比,DBS特征能够更好地对属于同一类别的形状进行分类。训练了一个支持向量机(SVM)分类器,利用DBS区分不同类别。在乳腺DCE-MRI上区分良性与恶性病变时,SVM的准确率为83±4.47%,在数字化组织学上区分前列腺癌的中间Gleason分级时,准确率超过80%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验