Suppr超能文献

一种针对3特斯拉体内前列腺动态对比增强磁共振成像的综合分割、配准和癌症检测方案。

A comprehensive segmentation, registration, and cancer detection scheme on 3 Tesla in vivo prostate DCE-MRI.

作者信息

Viswanath Satish, Bloch B Nicolas, Genega Elisabeth, Rofsky Neil, Lenkinski Robert, Chappelow Jonathan, Toth Robert, Madabhushi Anant

机构信息

Department of Biomedical Engineering, Rutgers University, NJ, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):662-9. doi: 10.1007/978-3-540-85988-8_79.

Abstract

Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion. Comparatively there is relatively little work in developing CAD schemes for prostate DCE-MRI. In this paper, we present a novel unsupervised detection scheme for CaP from 3 T DCE-MRI which comprises 3 distinct steps. First, a multi-attribute active shape model is used to automatically segment the prostate boundary from 3 T in vivo MR imagery. A robust multimodal registration scheme is then used to non-linearly align corresponding whole mount histological and DCE-MRI sections from prostatectomy specimens to determine the spatial extent of CaP. Non-linear dimensionality reduction schemes such as locally linear embedding (LLE) have been previously shown to be useful in projecting such high dimensional biomedical data into a lower dimensional subspace while preserving the non-linear geometry of the data manifold. DCE-MRI data is embedded via LLE and then classified via unsupervised consensus clustering to identify distinct classes. Quantitative evaluation on 21 histology-MRI slice pairs against registered CaP ground truth estimates yielded a maximum CaP detection accuracy of 77.20% while the popular three time point (3TP) scheme yielded an accuracy of 67.37%.

摘要

最近,前列腺的高分辨率3特斯拉(T)动态对比增强磁共振成像(DCE-MRI)已成为检测前列腺癌(CaP)的一种有前景的方法。迄今为止,针对DCE-MRI数据的计算机辅助诊断(CAD)方案主要是为乳腺癌开发的,通常涉及将动态强度变化作为病变对比剂摄取函数的模型拟合。相比之下,在开发前列腺DCE-MRI的CAD方案方面的工作相对较少。在本文中,我们提出了一种用于从3T DCE-MRI中检测CaP的新型无监督检测方案,该方案包括3个不同的步骤。首先,使用多属性主动形状模型从3T体内MR图像中自动分割前列腺边界。然后使用一种强大的多模态配准方案对前列腺切除标本的相应全层组织学和DCE-MRI切片进行非线性对齐,以确定CaP的空间范围。诸如局部线性嵌入(LLE)之类的非线性降维方案先前已被证明可用于将此类高维生物医学数据投影到低维子空间中,同时保留数据流形的非线性几何形状。通过LLE对DCE-MRI数据进行嵌入,然后通过无监督一致性聚类进行分类以识别不同的类别。针对已配准的CaP地面真值估计对21个组织学-MRI切片对进行的定量评估产生了77.20%的最大CaP检测准确率,而流行的三个时间点(3TP)方案的准确率为67.37%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b48/2810962/8d71df5a2ef0/nihms124637f1.jpg

相似文献

引用本文的文献

本文引用的文献

3
Local multidimensional scaling.局部多维缩放
Neural Netw. 2006 Jul-Aug;19(6-7):889-99. doi: 10.1016/j.neunet.2006.05.014. Epub 2006 Jun 19.
4
Combining multiple clusterings using evidence accumulation.使用证据积累合并多个聚类。
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):835-50. doi: 10.1109/TPAMI.2005.113.
6
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验