Viswanath Satish, Bloch B Nicolas, Genega Elisabeth, Rofsky Neil, Lenkinski Robert, Chappelow Jonathan, Toth Robert, Madabhushi Anant
Department of Biomedical Engineering, Rutgers University, NJ, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):662-9. doi: 10.1007/978-3-540-85988-8_79.
Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate has emerged as a promising modality for detecting prostate cancer (CaP). Computer-aided diagnosis (CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake by the lesion. Comparatively there is relatively little work in developing CAD schemes for prostate DCE-MRI. In this paper, we present a novel unsupervised detection scheme for CaP from 3 T DCE-MRI which comprises 3 distinct steps. First, a multi-attribute active shape model is used to automatically segment the prostate boundary from 3 T in vivo MR imagery. A robust multimodal registration scheme is then used to non-linearly align corresponding whole mount histological and DCE-MRI sections from prostatectomy specimens to determine the spatial extent of CaP. Non-linear dimensionality reduction schemes such as locally linear embedding (LLE) have been previously shown to be useful in projecting such high dimensional biomedical data into a lower dimensional subspace while preserving the non-linear geometry of the data manifold. DCE-MRI data is embedded via LLE and then classified via unsupervised consensus clustering to identify distinct classes. Quantitative evaluation on 21 histology-MRI slice pairs against registered CaP ground truth estimates yielded a maximum CaP detection accuracy of 77.20% while the popular three time point (3TP) scheme yielded an accuracy of 67.37%.
最近,前列腺的高分辨率3特斯拉(T)动态对比增强磁共振成像(DCE-MRI)已成为检测前列腺癌(CaP)的一种有前景的方法。迄今为止,针对DCE-MRI数据的计算机辅助诊断(CAD)方案主要是为乳腺癌开发的,通常涉及将动态强度变化作为病变对比剂摄取函数的模型拟合。相比之下,在开发前列腺DCE-MRI的CAD方案方面的工作相对较少。在本文中,我们提出了一种用于从3T DCE-MRI中检测CaP的新型无监督检测方案,该方案包括3个不同的步骤。首先,使用多属性主动形状模型从3T体内MR图像中自动分割前列腺边界。然后使用一种强大的多模态配准方案对前列腺切除标本的相应全层组织学和DCE-MRI切片进行非线性对齐,以确定CaP的空间范围。诸如局部线性嵌入(LLE)之类的非线性降维方案先前已被证明可用于将此类高维生物医学数据投影到低维子空间中,同时保留数据流形的非线性几何形状。通过LLE对DCE-MRI数据进行嵌入,然后通过无监督一致性聚类进行分类以识别不同的类别。针对已配准的CaP地面真值估计对21个组织学-MRI切片对进行的定量评估产生了77.20%的最大CaP检测准确率,而流行的三个时间点(3TP)方案的准确率为67.37%。