Tiwari Pallavi, Kurhanewicz John, Rosen Mark, Madabhushi Anant
Department of Biomedical Engineering, Rutgers University, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):666-73. doi: 10.1007/978-3-642-15711-0_83.
With the wide array of multi scale, multi-modal data now available for disease characterization, the major challenge in integrated disease diagnostics is to able to represent the different data streams in a common framework while overcoming differences in scale and dimensionality. This common knowledge representation framework is an important pre-requisite to develop integrated meta-classifiers for disease classification. In this paper, we present a unified data fusion framework, Semi Supervised Multi Kernel Graph Embedding (SeSMiK-GE). Our method allows for representation of individual data modalities via a combined multi-kernel framework followed by semi- supervised dimensionality reduction, where partial label information is incorporated to embed high dimensional data in a reduced space. In this work we evaluate SeSMiK-GE for distinguishing (a) benign from cancerous (CaP) areas, and (b) aggressive high-grade prostate cancer from indolent low-grade by integrating information from 1.5 Tesla in vivo Magnetic Resonance Imaging (anatomic) and Spectroscopy (metabolic). Comparing SeSMiK-GE with unimodal T2w, MRS classifiers and a previous published non-linear dimensionality reduction driven combination scheme (ScEPTre) yielded classification accuracies of (a) 91.3% (SeSMiK), 66.1% (MRI), 82.6% (MRS) and 86.8% (ScEPTre) for distinguishing benign from CaP regions, and (b) 87.5% (SeSMiK), 79.8% (MRI), 83.7% (MRS) and 83.9% (ScEPTre) for distinguishing high and low grade CaP over a total of 19 multi-modal MRI patient studies.
随着现在可用于疾病特征描述的多尺度、多模态数据种类繁多,综合疾病诊断中的主要挑战在于能够在一个通用框架中表示不同的数据流,同时克服尺度和维度上的差异。这个通用的知识表示框架是开发用于疾病分类的综合元分类器的重要前提。在本文中,我们提出了一个统一的数据融合框架,即半监督多核图嵌入(SeSMiK-GE)。我们的方法允许通过组合多核框架来表示各个数据模态,然后进行半监督降维,其中纳入部分标签信息以将高维数据嵌入到一个低维空间中。在这项工作中,我们通过整合来自1.5特斯拉体内磁共振成像(解剖学)和光谱学(代谢)的信息,评估SeSMiK-GE用于区分(a)良性区域与癌性(CaP)区域,以及(b)侵袭性高级别前列腺癌与惰性低级别前列腺癌的能力。将SeSMiK-GE与单模态T2w、MRS分类器以及之前发表的基于非线性降维的组合方案(ScEPTre)进行比较,在总共19项多模态MRI患者研究中,对于区分良性与CaP区域,其分类准确率分别为(a)91.3%(SeSMiK)、66.1%(MRI)、82.6%(MRS)和86.8%(ScEPTre);对于区分高级别和低级别CaP,其分类准确率分别为(b)87.5%(SeSMiK)、79.8%(MRI)、83.7%(MRS)和83.9%(ScEPTre)。