Kwak Jin Tae, Xu Sheng, Wood Bradford J, Turkbey Baris, Choyke Peter L, Pinto Peter A, Wang Shijun, Summers Ronald M
Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892.
Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.
Med Phys. 2015 May;42(5):2368-78. doi: 10.1118/1.4918318.
The authors propose a computer-aided diagnosis (CAD) system for prostate cancer to aid in improving the accuracy, reproducibility, and standardization of multiparametric magnetic resonance imaging (MRI).
The proposed system utilizes two MRI sequences [T2-weighted MRI and high-b-value (b = 2000 s/mm(2)) diffusion-weighted imaging (DWI)] and texture features based on local binary patterns. A three-stage feature selection method is employed to provide the most discriminative features. The authors included a total of 244 patients. Training the CAD system on 108 patients (78 MR-positive prostate cancers and 105 benign MR-positive lesions), two validation studies were retrospectively performed on 136 patients (68 MR-positive prostate cancers, 111 benign MR-positive lesions, and 117 MR-negative benign lesions).
In distinguishing cancer from MR-positive benign lesions, an area under receiver operating characteristic curve (AUC) of 0.83 [95% confidence interval (CI): 0.76-0.89] was achieved. For cancer vs MR-positive or MR-negative benign lesions, the authors obtained an AUC of 0.89 AUC (95% CI: 0.84-0.93). The performance of the CAD system was not dependent on the specific regions of the prostate, e.g., a peripheral zone or transition zone. Moreover, the CAD system outperformed other combinations of MRI sequences: T2W MRI, high-b-value DWI, and the standard apparent diffusion coefficient (ADC) map of DWI.
The novel CAD system is able to detect the discriminative texture features for cancer detection and localization and is a promising tool for improving the quality and efficiency of prostate cancer diagnosis.
作者提出一种用于前列腺癌的计算机辅助诊断(CAD)系统,以帮助提高多参数磁共振成像(MRI)的准确性、可重复性和标准化。
所提出的系统利用两种MRI序列[T2加权MRI和高b值(b = 2000 s/mm(2))扩散加权成像(DWI)]以及基于局部二值模式的纹理特征。采用三阶段特征选择方法以提供最具判别力的特征。作者共纳入244例患者。在108例患者(78例磁共振阳性前列腺癌和105例良性磁共振阳性病变)上训练CAD系统,对136例患者(68例磁共振阳性前列腺癌、111例良性磁共振阳性病变和117例磁共振阴性良性病变)进行了两项回顾性验证研究。
在区分癌症与磁共振阳性良性病变时,获得了受试者操作特征曲线(AUC)下面积为0.83 [95%置信区间(CI):0.76 - 0.89]。对于癌症与磁共振阳性或磁共振阴性良性病变,作者获得的AUC为0.89(95% CI:0.84 - 0.93)。CAD系统的性能不依赖于前列腺的特定区域,例如外周带或移行带。此外,CAD系统优于其他MRI序列组合:T2加权MRI、高b值DWI和DWI的标准表观扩散系数(ADC)图。
新型CAD系统能够检测出用于癌症检测和定位的判别性纹理特征,是提高前列腺癌诊断质量和效率的有前景的工具。