Suppr超能文献

使用T2加权和高b值扩散加权磁共振成像的前列腺癌自动检测

Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging.

作者信息

Kwak Jin Tae, Xu Sheng, Wood Bradford J, Turkbey Baris, Choyke Peter L, Pinto Peter A, Wang Shijun, Summers Ronald M

机构信息

Center for Interventional Oncology, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892.

Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

Med Phys. 2015 May;42(5):2368-78. doi: 10.1118/1.4918318.

Abstract

PURPOSE

The authors propose a computer-aided diagnosis (CAD) system for prostate cancer to aid in improving the accuracy, reproducibility, and standardization of multiparametric magnetic resonance imaging (MRI).

METHODS

The proposed system utilizes two MRI sequences [T2-weighted MRI and high-b-value (b = 2000 s/mm(2)) diffusion-weighted imaging (DWI)] and texture features based on local binary patterns. A three-stage feature selection method is employed to provide the most discriminative features. The authors included a total of 244 patients. Training the CAD system on 108 patients (78 MR-positive prostate cancers and 105 benign MR-positive lesions), two validation studies were retrospectively performed on 136 patients (68 MR-positive prostate cancers, 111 benign MR-positive lesions, and 117 MR-negative benign lesions).

RESULTS

In distinguishing cancer from MR-positive benign lesions, an area under receiver operating characteristic curve (AUC) of 0.83 [95% confidence interval (CI): 0.76-0.89] was achieved. For cancer vs MR-positive or MR-negative benign lesions, the authors obtained an AUC of 0.89 AUC (95% CI: 0.84-0.93). The performance of the CAD system was not dependent on the specific regions of the prostate, e.g., a peripheral zone or transition zone. Moreover, the CAD system outperformed other combinations of MRI sequences: T2W MRI, high-b-value DWI, and the standard apparent diffusion coefficient (ADC) map of DWI.

CONCLUSIONS

The novel CAD system is able to detect the discriminative texture features for cancer detection and localization and is a promising tool for improving the quality and efficiency of prostate cancer diagnosis.

摘要

目的

作者提出一种用于前列腺癌的计算机辅助诊断(CAD)系统,以帮助提高多参数磁共振成像(MRI)的准确性、可重复性和标准化。

方法

所提出的系统利用两种MRI序列[T2加权MRI和高b值(b = 2000 s/mm(2))扩散加权成像(DWI)]以及基于局部二值模式的纹理特征。采用三阶段特征选择方法以提供最具判别力的特征。作者共纳入244例患者。在108例患者(78例磁共振阳性前列腺癌和105例良性磁共振阳性病变)上训练CAD系统,对136例患者(68例磁共振阳性前列腺癌、111例良性磁共振阳性病变和117例磁共振阴性良性病变)进行了两项回顾性验证研究。

结果

在区分癌症与磁共振阳性良性病变时,获得了受试者操作特征曲线(AUC)下面积为0.83 [95%置信区间(CI):0.76 - 0.89]。对于癌症与磁共振阳性或磁共振阴性良性病变,作者获得的AUC为0.89(95% CI:0.84 - 0.93)。CAD系统的性能不依赖于前列腺的特定区域,例如外周带或移行带。此外,CAD系统优于其他MRI序列组合:T2加权MRI、高b值DWI和DWI的标准表观扩散系数(ADC)图。

结论

新型CAD系统能够检测出用于癌症检测和定位的判别性纹理特征,是提高前列腺癌诊断质量和效率的有前景的工具。

相似文献

引用本文的文献

本文引用的文献

2
Computer-aided detection of prostate cancer in MRI.计算机辅助检测 MRI 中的前列腺癌。
IEEE Trans Med Imaging. 2014 May;33(5):1083-92. doi: 10.1109/TMI.2014.2303821.
5
Cancer statistics, 2014.癌症统计数据,2014 年。
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验