Suppr超能文献

学习动力学在运动速度上的线性超泛化揭示了运动适应的各向异性、增益编码基元。

Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

机构信息

Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

J Neurophysiol. 2011 Jan;105(1):45-59. doi: 10.1152/jn.00884.2009. Epub 2010 Sep 29.

Abstract

The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

摘要

将习得的运动动作泛化到新情境的能力是运动系统的一个关键特征。例如,骑自行车或挥拍的能力通常首先在较低的速度下发展,然后应用于更快的速度。许多先前的研究已经研究了运动适应在运动方向上的泛化,并发现习得的适应在与显示狭窄高斯调谐的运动基元存在一致的模式中衰减。然而,很少有研究研究运动适应在运动速度上的泛化。在以一种速度进行指向目标的点对点到达手臂运动时,适应线性速度相关动力学后,我们测试了受试者将这种适应转移到针对相同目标的短持续时间高速度运动的能力。我们发现,与高速运动相关的速度曲线的幅度和时间历程,训练适应的近乎完美的线性外推:运动速度提高 69%,训练适应的外推率为 74%。运动速度的增加与适应的增加之间的紧密匹配表明线性超泛化。计算模型表明,这种跨越运动速度的线性超泛化模式与运动基元在其首选速度周围显示各向同性高斯调谐的适应的先前模型不兼容。相反,我们表明,这种概括模式表明,参与粘性动力学适应的基元在速度空间中显示出各向异性调谐,并编码了运动输出和运动状态之间的增益,而不是运动输出本身。

相似文献

2
Error generalization as a function of velocity and duration: human reaching movements.
Exp Brain Res. 2008 Mar;186(1):23-37. doi: 10.1007/s00221-007-1202-y. Epub 2007 Nov 20.
3
On the encoding capacity of human motor adaptation.
J Neurophysiol. 2021 Jul 1;126(1):123-139. doi: 10.1152/jn.00593.2020. Epub 2021 Jun 2.
4
Primitives for motor adaptation reflect correlated neural tuning to position and velocity.
Neuron. 2009 Nov 25;64(4):575-89. doi: 10.1016/j.neuron.2009.10.001.
5
Plan- versus motion-referenced generalization of fast and slow processes in reach adaptation.
J Neurophysiol. 2023 Apr 1;129(4):767-780. doi: 10.1152/jn.00294.2022. Epub 2023 Mar 8.
6
The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
PLoS Comput Biol. 2017 May 8;13(5):e1005492. doi: 10.1371/journal.pcbi.1005492. eCollection 2017 May.
7
Features of motor performance that drive adaptation in rapid hand movements.
Exp Brain Res. 2003 Feb;148(3):388-400. doi: 10.1007/s00221-002-1288-1. Epub 2002 Nov 19.
9
Learning not to generalize: modular adaptation of visuomotor gain.
J Neurophysiol. 2010 Jun;103(6):2938-52. doi: 10.1152/jn.01089.2009. Epub 2010 Mar 31.
10
Learning of action through adaptive combination of motor primitives.
Nature. 2000 Oct 12;407(6805):742-7. doi: 10.1038/35037588.

引用本文的文献

1
The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2411459121. doi: 10.1073/pnas.2411459121. Epub 2024 Oct 7.
2
Kernels of Motor Memory Formation: Temporal Generalization in Bimanual Adaptation.
J Neurosci. 2024 Nov 20;44(47):e0359242024. doi: 10.1523/JNEUROSCI.0359-24.2024.
4
Learning context shapes bimanual control strategy and generalization of novel dynamics.
PLoS Comput Biol. 2023 Dec 8;19(12):e1011189. doi: 10.1371/journal.pcbi.1011189. eCollection 2023 Dec.
6
Random Practice Enhances Retention and Spatial Transfer in Force Field Adaptation.
Front Hum Neurosci. 2022 May 4;16:816197. doi: 10.3389/fnhum.2022.816197. eCollection 2022.
7
Motor planning under uncertainty.
Elife. 2021 Sep 6;10:e67019. doi: 10.7554/eLife.67019.
8
Generalizing movement patterns following shoulder fixation.
J Neurophysiol. 2020 Mar 1;123(3):1193-1205. doi: 10.1152/jn.00696.2019. Epub 2020 Feb 26.
9
The 24-h savings of adaptation to novel movement dynamics initially reflects the recall of previous performance.
J Neurophysiol. 2019 Sep 1;122(3):933-946. doi: 10.1152/jn.00569.2018. Epub 2019 Jul 10.
10
The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.
J Neurophysiol. 2017 Oct 1;118(4):2483-2498. doi: 10.1152/jn.00636.2016. Epub 2017 Aug 9.

本文引用的文献

2
Generalization of dynamics learning across changes in movement amplitude.
J Neurophysiol. 2010 Jul;104(1):426-38. doi: 10.1152/jn.00886.2009. Epub 2010 May 12.
3
Primitives for motor adaptation reflect correlated neural tuning to position and velocity.
Neuron. 2009 Nov 25;64(4):575-89. doi: 10.1016/j.neuron.2009.10.001.
4
Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas.
J Neurophysiol. 2009 Nov;102(5):2921-32. doi: 10.1152/jn.90834.2008. Epub 2009 Sep 9.
5
Effects of human arm impedance on dynamics learning and generalization.
J Neurophysiol. 2009 Jun;101(6):3158-68. doi: 10.1152/jn.91336.2008. Epub 2009 Apr 8.
6
Robotic neurorehabilitation: a computational motor learning perspective.
J Neuroeng Rehabil. 2009 Feb 25;6:5. doi: 10.1186/1743-0003-6-5.
7
Understanding sensorimotor adaptation and learning for rehabilitation.
Curr Opin Neurol. 2008 Dec;21(6):628-33. doi: 10.1097/WCO.0b013e328315a293.
8
Shared internal models for feedforward and feedback control.
J Neurosci. 2008 Oct 15;28(42):10663-73. doi: 10.1523/JNEUROSCI.5479-07.2008.
9
Long-term retention explained by a model of short-term learning in the adaptive control of reaching.
J Neurophysiol. 2008 Nov;100(5):2948-55. doi: 10.1152/jn.90706.2008. Epub 2008 Sep 10.
10
Error generalization as a function of velocity and duration: human reaching movements.
Exp Brain Res. 2008 Mar;186(1):23-37. doi: 10.1007/s00221-007-1202-y. Epub 2007 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验