Suppr超能文献

量化基于基函数学习的自适应系统逐次试验行为的泛化能力:人类运动控制的理论与实验

Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control.

作者信息

Donchin Opher, Francis Joseph T, Shadmehr Reza

机构信息

Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2195, USA.

出版信息

J Neurosci. 2003 Oct 8;23(27):9032-45. doi: 10.1523/JNEUROSCI.23-27-09032.2003.

Abstract

During reaching movements, the brain's internal models map desired limb motion into predicted forces. When the forces in the task change, these models adapt. Adaptation is guided by generalization: errors in one movement influence prediction in other types of movement. If the mapping is accomplished with population coding, combining basis elements that encode different regions of movement space, then generalization can reveal the encoding of the basis elements. We present a theory that relates encoding to generalization using trial-by-trial changes in behavior during adaptation. We consider adaptation during reaching movements in various velocity-dependent force fields and quantify how errors generalize across direction. We find that the measurement of error is critical to the theory. A typical assumption in motor control is that error is the difference between a current trajectory and a desired trajectory (DJ) that does not change during adaptation. Under this assumption, in all force fields that we examined, including one in which force randomly changes from trial to trial, we found a bimodal generalization pattern, perhaps reflecting basis elements that encode direction bimodally. If the DJ was allowed to vary, bimodality was reduced or eliminated, but the generalization function accounted for nearly twice as much variance. We suggest, therefore, that basis elements representing the internal model of dynamics are sensitive to limb velocity with bimodal tuning; however, it is also possible that during adaptation the error metric itself adapts, which affects the implied shape of the basis elements.

摘要

在伸手够物动作过程中,大脑的内部模型将期望的肢体运动映射为预测力。当任务中的力发生变化时,这些模型会进行调整。调整由泛化引导:一个动作中的误差会影响其他类型动作的预测。如果映射是通过群体编码完成的,即将编码运动空间不同区域的基元组合起来,那么泛化可以揭示基元的编码方式。我们提出一种理论,利用适应过程中行为的逐次试验变化将编码与泛化联系起来。我们考虑在各种与速度相关的力场中伸手够物动作时的适应情况,并量化误差如何在不同方向上泛化。我们发现误差的度量对该理论至关重要。运动控制中的一个典型假设是,误差是当前轨迹与期望轨迹(DJ)之间的差值,且在适应过程中不会改变。在这个假设下,在我们研究的所有力场中,包括力在每次试验中随机变化的力场,我们都发现了一种双峰泛化模式,这可能反映了以双峰方式编码方向的基元。如果允许DJ变化,双峰性会降低或消除,但泛化函数解释的方差几乎增加了一倍。因此,我们认为代表动力学内部模型的基元对肢体速度具有双峰调谐敏感性;然而,在适应过程中误差度量本身也有可能发生变化,这会影响基元的隐含形状。

相似文献

3
Adaptation and generalization in acceleration-dependent force fields.加速度相关力场中的适应与泛化
Exp Brain Res. 2006 Mar;169(4):496-506. doi: 10.1007/s00221-005-0163-2. Epub 2005 Nov 16.
5
Neural Tuning Functions Underlie Both Generalization and Interference.神经调谐函数是泛化和干扰的基础。
PLoS One. 2015 Jun 25;10(6):e0131268. doi: 10.1371/journal.pone.0131268. eCollection 2015.
7
Implications of plan-based generalization in sensorimotor adaptation.基于计划的泛化在感觉运动适应中的意义。
J Neurophysiol. 2017 Jul 1;118(1):383-393. doi: 10.1152/jn.00974.2016. Epub 2017 Apr 12.
8
Internal models of limb dynamics and the encoding of limb state.肢体动力学的内部模型与肢体状态编码
J Neural Eng. 2005 Sep;2(3):S266-78. doi: 10.1088/1741-2560/2/3/S09. Epub 2005 Aug 31.

引用本文的文献

3
Human motor learning dynamics in high-dimensional tasks.人类在高维任务中的运动学习动力学。
PLoS Comput Biol. 2024 Oct 14;20(10):e1012455. doi: 10.1371/journal.pcbi.1012455. eCollection 2024 Oct.

本文引用的文献

4
Learning to move amid uncertainty.学会在不确定性中行动。
J Neurophysiol. 2001 Aug;86(2):971-85. doi: 10.1152/jn.2001.86.2.971.
5
The influence of previous experience on predictive motor control.既往经验对预测性运动控制的影响。
Neuroreport. 2001 Mar 26;12(4):649-53. doi: 10.1097/00001756-200103260-00007.
8
Spatial generalization from learning dynamics of reaching movements.基于伸手动作学习动力学的空间泛化。
J Neurosci. 2000 Oct 15;20(20):7807-15. doi: 10.1523/JNEUROSCI.20-20-07807.2000.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验