Suppr超能文献

与适应物理干扰相比,基于明确视觉反馈的运动状态相关运动学习的时空特性有限。

Motion state-dependent motor learning based on explicit visual feedback has limited spatiotemporal properties compared with adaptation to physical perturbations.

机构信息

Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States.

Department of Neurology, University of California, Davis, California, United States.

出版信息

J Neurophysiol. 2024 Feb 1;131(2):278-293. doi: 10.1152/jn.00198.2023. Epub 2024 Jan 3.

Abstract

We recently showed that subjects can learn motion state-dependent changes to motor output (temporal force patterns) based on explicit visual feedback of the equivalent force field (i.e., without the physical perturbation). Here, we examined the spatiotemporal properties of this learning compared with learning based on physical perturbations. There were two human subject groups and two experimental paradigms. One group ( = 40) experienced physical perturbations (i.e., a velocity-dependent force field, vFF), whereas the second ( = 40) was given explicit visual feedback (EVF) of the force-velocity relationship. In the latter, subjects moved in force channels and we provided visual feedback of the lateral force exerted during the movement, as well as the required force pattern based on movement velocity. In the first paradigm (spatial generalization), following vFF or EVF training, generalization of learning was tested by requiring subjects to move to 14 untrained target locations (0° to ±135° around the trained location). In the second paradigm (temporal stability), following training, we examined the decay of learning over eight delay periods (0 to 90 s). Results showed that learning based on EVF did not generalize to untrained directions, whereas the generalization for the vFF was significant for targets ≤ 45° away. In addition, the decay of learning for the EVF group was significantly faster than the FF group (a time constant of 2.72 ± 1.74 s vs. 12.53 ± 11.83 s). Collectively, our results suggest that recalibrating motor output based on explicit motion state information, in contrast to physical disturbances, uses learning mechanisms with limited spatiotemporal properties. Adjustment of motor output based on limb motion state information can be achieved based on explicit information or from physical perturbations. Here, we investigated the spatiotemporal characteristics of short-term motor learning to determine the properties of the respective learning mechanisms. Our results suggest that adjustments based on physical perturbations are more temporally stable and applied over a greater spatial range than the learning based on explicit visual feedback, suggesting largely separate learning mechanisms.

摘要

我们最近表明,受试者可以根据等效力场(即无需物理扰动)的明确视觉反馈,学习运动状态相关的运动输出(时间力模式)变化。在这里,我们研究了这种学习与基于物理扰动的学习相比的时空特性。有两个人类受试者组和两个实验范式。一组(n=40)经历了物理扰动(即速度相关力场,vFF),而第二组(n=40)接受了力-速度关系的明确视觉反馈(EVF)。在后一种情况下,受试者在力通道中移动,我们提供了运动过程中施加的侧向力的视觉反馈,以及基于运动速度的所需力模式。在第一个范式(空间泛化)中,在 vFF 或 EVF 训练后,通过要求受试者移动到 14 个未经训练的目标位置(训练位置周围 0°至±135°)来测试学习的泛化。在第二个范式(时间稳定性)中,在训练后,我们检查了 8 个延迟期(0 至 90 秒)内学习的衰减。结果表明,基于 EVF 的学习不会泛化到未经训练的方向,而 vFF 的泛化对于≤45°的目标是显著的。此外,EVF 组的学习衰减速度明显快于 FF 组(时间常数为 2.72±1.74s 与 12.53±11.83s)。总的来说,我们的结果表明,与物理干扰相比,基于明确运动状态信息重新校准运动输出使用的是具有有限时空特性的学习机制。基于肢体运动状态信息的运动输出调整可以基于明确信息或物理干扰来实现。在这里,我们研究了短期运动学习的时空特征,以确定各自学习机制的特性。我们的结果表明,基于物理干扰的调整比基于明确视觉反馈的学习在时间上更稳定,应用范围更广,这表明存在很大程度上分离的学习机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9522/11286305/5b6c47fd7807/jn-00198-2023r01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验