Institute for Neurobiology, Heinrich-Heine-University of Duesseldorf, Germany.
Hippocampus. 2012 Jan;22(1):29-42. doi: 10.1002/hipo.20843. Epub 2010 Sep 29.
Glial cells respond to neuronal activity by transient increases in their intracellular calcium concentration. At hippocampal Schaffer collateral to CA1 pyramidal cell synapses, such activity-induced astrocyte calcium transients modulate neuronal excitability, synaptic activity, and LTP induction threshold by calcium-dependent release of gliotransmitters. Despite a significant role of astrocyte calcium signaling in plasticity of these synapses, little is known about activity-dependent changes of astrocyte calcium signaling itself. In this study, we analyzed calcium transients in identified astrocytes and NG2-cells located in the stratum radiatum in response to different intensities and patterns of Schaffer collateral stimulation. To this end, we employed multiphoton calcium imaging with the low-affinity indicator dye Fluo-5F in glial cells, combined with extracellular field potential recordings to monitor postsynaptic responses to the afferent stimulation. Our results confirm that somata and processes of astrocytes, but not of NG2-cells, exhibit intrinsic calcium signaling independent of evoked neuronal activity. Moderate stimulation of Schaffer collaterals (three pulses at 50 Hz) induced calcium transients in astrocytes and NG2-cells. Astrocyte calcium transients upon this three-pulse stimulation could be evoked repetitively, increased in amplitude with increasing stimulation intensity and were dependent on activation of metabotropic glutamate receptors. Activity-induced transients in NG2-cells, in contrast, showed a rapid run-down upon repeated three-pulse stimulation. Theta burst stimulation and stimulation for 5 min at 1 Hz induced synaptic potentiation and depression, respectively, as revealed by a lasting increase or decrease in population spike amplitudes upon three-pulse stimulation. Synaptic plasticity was, however, not accompanied by corresponding alterations in the amplitude of astrocyte calcium signals. Taken together, our results suggest that the amplitude of astrocyte calcium signals reflects the number of activated synapses but does not correlate with the degree of synaptic potentiation or depression at Schaffer collateral to CA1 pyramidal cell synapses.
神经胶质细胞通过其细胞内钙离子浓度的短暂增加来响应神经元活动。在海马 CA1 锥体神经元的 Schaffer 侧支到 CA1 锥体神经元的突触处,这种活性诱导的星形胶质细胞钙瞬变通过钙依赖性释放神经胶质递质来调节神经元兴奋性、突触活动和 LTP 诱导阈值。尽管星形胶质细胞钙信号在这些突触的可塑性中起着重要作用,但对星形胶质细胞钙信号本身的活性依赖性变化知之甚少。在这项研究中,我们分析了在辐射层中鉴定的星形胶质细胞和 NG2 细胞对不同强度和模式的 Schaffer 侧支刺激的钙瞬变。为此,我们采用低亲和力指示剂 Fluo-5F 的多光子钙成像,结合细胞外场电位记录来监测传入刺激的突触后反应。我们的结果证实,星形胶质细胞的体和突起表现出与诱发神经元活动无关的内在钙信号,而 NG2 细胞则没有。Schaffer 侧支的适度刺激(50 Hz 时的三个脉冲)诱导星形胶质细胞和 NG2 细胞中的钙瞬变。对这三个脉冲刺激的星形胶质细胞钙瞬变可以重复诱发,随着刺激强度的增加而增加幅度,并且依赖于代谢型谷氨酸受体的激活。相比之下,NG2 细胞的活性诱导瞬变在重复三次脉冲刺激时迅速衰减。θ爆发刺激和 1 Hz 刺激 5 分钟分别诱导突触增强和抑制,如在三次脉冲刺激时群体锋电位幅度的持续增加或减少所揭示的那样。然而,突触可塑性并没有伴随着星形胶质细胞钙信号幅度的相应变化。总的来说,我们的结果表明,星形胶质细胞钙信号的幅度反映了激活的突触数量,但与 Schaffer 侧支到 CA1 锥体神经元突触的突触增强或抑制程度无关。