Departamento de Fisiología, Universidad de Valparaíso, Valparaíso, Chile.
Eur J Neurosci. 2011 Apr;33(8):1483-92. doi: 10.1111/j.1460-9568.2011.07631.x. Epub 2011 Mar 14.
Astrocytes exhibit spontaneous calcium oscillations that could induce the release of glutamate as gliotransmitter in rat hippocampal slices. However, it is unknown whether this spontaneous release of astrocytic glutamate may contribute to determining the basal neurotransmitter release probability in central synapses. Using whole-cell recordings and Ca(2+) imaging, we investigated the effects of the spontaneous astrocytic activity on neurotransmission and synaptic plasticity at CA3-CA1 hippocampal synapses. We show here that the metabolic gliotoxin fluorocitrate (FC) reduces the amplitude of evoked excitatory postsynaptic currents and increases the paired-pulse facilitation, mainly due to the reduction of the neurotransmitter release probability and the synaptic potency. FC also decreased intracellular Ca(2+) signalling and Ca(2+) -dependent glutamate release from astrocytes. The addition of glutamine rescued the effects of FC over the synaptic potency; however, the probability of neurotransmitter release remained diminished. The blockage of group I metabotropic glutamate receptors mimicked the effects of FC on the frequency of miniature synaptic responses. In the presence of FC, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N '-tetra-acetate or group I metabotropic glutamate receptor antagonists, the excitatory postsynaptic current potentiation induced by the spike-timing-dependent plasticity protocol was blocked, and it was rescued by delivering a stronger spike-timing-dependent plasticity protocol. Taken together, these results suggest that spontaneous glutamate release from astrocytes contributes to setting the basal probability of neurotransmitter release via metabotropic glutamate receptor activation, which could be operating as a gain control mechanism that regulates the threshold of long-term potentiation. Therefore, endogenous astrocyte activity provides a novel non-neuronal mechanism that could be critical for transferring information in the central nervous system.
星形胶质细胞表现出自发的钙振荡,这可能导致谷氨酸作为神经递质释放,在大鼠海马切片中。然而,目前尚不清楚这种星形胶质细胞谷氨酸的自发释放是否有助于确定中枢突触的基础神经递质释放概率。使用全细胞记录和 Ca(2+)成像,我们研究了自发性星形胶质细胞活动对 CA3-CA1 海马突触神经传递和突触可塑性的影响。我们在这里表明,代谢性神经胶质毒素氟柠檬酸 (FC) 降低了诱发的兴奋性突触后电流的幅度,并增加了成对脉冲易化,主要是由于神经递质释放概率和突触效能的降低。FC 还降低了细胞内 Ca(2+)信号和 Ca(2+)依赖性谷氨酸从星形胶质细胞中的释放。谷氨酰胺的添加挽救了 FC 对突触效能的影响;然而,神经递质释放的概率仍然降低。I 组代谢型谷氨酸受体阻断剂模拟了 FC 对微突触反应频率的影响。在 FC 存在的情况下,Ca(2+)螯合剂 1,2-双(2-氨基苯氧基)乙烷-N,N,N ',N '-四乙酸或 I 组代谢型谷氨酸受体拮抗剂阻断了由尖峰时间依赖性可塑性协议诱导的兴奋性突触后电流增强,并且通过传递更强的尖峰时间依赖性可塑性协议来挽救。综上所述,这些结果表明,星形胶质细胞自发释放的谷氨酸通过代谢型谷氨酸受体激活有助于设定神经递质释放的基础概率,这可能作为一种增益控制机制,调节长时程增强的阈值。因此,内源性星形胶质细胞活动提供了一种新的非神经元机制,这对于在中枢神经系统中传递信息可能是至关重要的。