Suppr超能文献

用于 RNA 三维结构模拟的粗粒度模型。

Coarse-grained model for simulation of RNA three-dimensional structures.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712, USA.

出版信息

J Phys Chem B. 2010 Oct 28;114(42):13497-506. doi: 10.1021/jp104926t.

Abstract

The accurate prediction of an RNA's three-dimensional structure from its "primary structure" will have a tremendous influence on the experimental design and its interpretation and ultimately our understanding of the many functions of RNA. This paper presents a general coarse-grained (CG) potential for modeling RNA 3-D structures. Each nucleotide is represented by five pseudo atoms, two for the backbone (one for the phosphate and another for the sugar) and three for the base to represent base-stacking interactions. The CG potential has been parametrized from statistical analysis of 688 RNA experimental structures. Molecular dynamic simulations of 15 RNA molecules with the length of 12-27 nucleotides have been performed using the CG potential, with performance comparable to that from all-atom simulations. For ~75% of systems tested, simulated annealing led to native-like structures at least once out of multiple repeated runs. Furthermore, with weak distance restraints based on the knowledge of three to five canonical Watson-Crick pairs, all 15 RNAs tested are successfully folded to within 6.5 Å of native structures using the CG potential and simulated annealing. The results reveal that with a limited secondary structure model the current CG potential can reliably predict the 3-D structures for small RNA molecules. We also explored an all-atom force field to construct atomic structures from the CG simulations.

摘要

从 RNA 的“一级结构”准确预测其三维结构将对实验设计及其解释产生巨大影响,并最终影响我们对 RNA 多种功能的理解。本文提出了一种用于建模 RNA 三维结构的通用粗粒(CG)势。每个核苷酸由五个伪原子表示,两个用于骨架(一个用于磷酸盐,另一个用于糖),三个用于碱基以表示碱基堆积相互作用。CG 势是通过对 688 个 RNA 实验结构的统计分析参数化的。使用 CG 势对 15 个长度为 12-27 个核苷酸的 RNA 分子进行了分子动力学模拟,其性能与全原子模拟相当。对于测试的~75%的系统,模拟退火至少在多次重复运行中产生了一次类似于天然的结构。此外,基于三到五个规范 Watson-Crick 对的知识,使用 CG 势和模拟退火,成功地将 15 个测试 RNA 折叠到距离天然结构 6.5 Å 以内。结果表明,在有限的二级结构模型下,当前的 CG 势可以可靠地预测小分子 RNA 的三维结构。我们还探索了全原子力场,以从 CG 模拟中构建原子结构。

相似文献

1
Coarse-grained model for simulation of RNA three-dimensional structures.
J Phys Chem B. 2010 Oct 28;114(42):13497-506. doi: 10.1021/jp104926t.
2
RNA 3D structure prediction by using a coarse-grained model and experimental data.
J Phys Chem B. 2013 Mar 21;117(11):3135-44. doi: 10.1021/jp400751w. Epub 2013 Mar 11.
3
Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model.
J Phys Chem B. 2021 Nov 4;125(43):11907-11915. doi: 10.1021/acs.jpcb.1c07288. Epub 2021 Oct 25.
6
HiRE-RNA: a high resolution coarse-grained energy model for RNA.
J Phys Chem B. 2010 Sep 23;114(37):11957-66. doi: 10.1021/jp102497y.
7
IsRNA1: Prediction and Blind Screening of RNA 3D Structures.
J Chem Theory Comput. 2021 Mar 9;17(3):1842-1857. doi: 10.1021/acs.jctc.0c01148. Epub 2021 Feb 9.
8
RNA 3D Structure Prediction Using Coarse-Grained Models.
Front Mol Biosci. 2021 Jul 2;8:720937. doi: 10.3389/fmolb.2021.720937. eCollection 2021.
9
Modeling and predicting RNA three-dimensional structures.
Methods Mol Biol. 2015;1269:101-21. doi: 10.1007/978-1-4939-2291-8_6.
10
Coarse-grained simulations of RNA and DNA duplexes.
J Phys Chem B. 2013 Jul 11;117(27):8047-60. doi: 10.1021/jp400786b. Epub 2013 Jun 26.

引用本文的文献

1
Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg.
bioRxiv. 2025 Feb 28:2024.11.17.624048. doi: 10.1101/2024.11.17.624048.
2
RNA Folding Based on 5 Beads Model and Multiscale Simulation.
Interdiscip Sci. 2023 Sep;15(3):393-404. doi: 10.1007/s12539-023-00561-3. Epub 2023 Apr 28.
3
RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling.
Nucleic Acids Res. 2023 Apr 24;51(7):3341-3356. doi: 10.1093/nar/gkad122.
4
Computational tools to study RNA-protein complexes.
Front Mol Biosci. 2022 Oct 7;9:954926. doi: 10.3389/fmolb.2022.954926. eCollection 2022.
5
Modeling Noncanonical RNA Base Pairs by a Coarse-Grained IsRNA2 Model.
J Phys Chem B. 2021 Nov 4;125(43):11907-11915. doi: 10.1021/acs.jpcb.1c07288. Epub 2021 Oct 25.
6
A Bayes-inspired theory for optimally building an efficient coarse-grained folding force field.
Commun Inf Syst. 2021;21(1):65-83. doi: 10.4310/cis.2021.v21.n1.a4.
7
Engineered RNA Nanodesigns for Applications in RNA Nanotechnology.
DNA RNA Nanotechnol. 2015 Jan;1(1):1-15. doi: 10.2478/rnan-2013-0001. Epub 2013 May 31.
8
RNA 3D Structure Prediction Using Coarse-Grained Models.
Front Mol Biosci. 2021 Jul 2;8:720937. doi: 10.3389/fmolb.2021.720937. eCollection 2021.
9
Predicting RNA Scaffolds with a Hybrid Method of Vfold3D and VfoldLA.
Methods Mol Biol. 2021;2323:1-11. doi: 10.1007/978-1-0716-1499-0_1.
10
IsRNA1: Prediction and Blind Screening of RNA 3D Structures.
J Chem Theory Comput. 2021 Mar 9;17(3):1842-1857. doi: 10.1021/acs.jctc.0c01148. Epub 2021 Feb 9.

本文引用的文献

1
YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.
J Chem Theory Comput. 2006 May 1;2(3):529-540. doi: 10.1021/ct050323r. Epub 2006 Mar 18.
2
Non-coding RNAs: Meet thy masters.
Bioessays. 2010 Jul;32(7):599-608. doi: 10.1002/bies.200900112.
3
The code within the code.
Nature. 2010 May 6;465(7294):16-7. doi: 10.1038/465016a.
4
Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.
Nature. 2010 Apr 15;464(7291):1071-6. doi: 10.1038/nature08975.
5
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.
Nat Rev Genet. 2010 Mar;11(3):181-90. doi: 10.1038/nrg2749.
6
Transcriptional control of gene expression by microRNAs.
Cell. 2010 Jan 8;140(1):111-22. doi: 10.1016/j.cell.2009.12.023.
7
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex.
Cell. 2009 Nov 25;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
8
A global view of genomic information--moving beyond the gene and the master regulator.
Trends Genet. 2010 Jan;26(1):21-8. doi: 10.1016/j.tig.2009.11.002. Epub 2009 Nov 26.
9
Activation of gene expression by small RNA.
Curr Opin Microbiol. 2009 Dec;12(6):674-82. doi: 10.1016/j.mib.2009.09.009. Epub 2009 Oct 31.
10
Causes and consequences of microRNA dysregulation in cancer.
Nat Rev Genet. 2009 Oct;10(10):704-14. doi: 10.1038/nrg2634.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验