Suppr超能文献

一种受贝叶斯启发的理论,用于优化构建高效的粗粒度折叠力场。

A Bayes-inspired theory for optimally building an efficient coarse-grained folding force field.

作者信息

Hurst Travis, Zhang Dong, Zhou Yuanzhe, Chen Shi-Jie

机构信息

Department of Physics, University of Missouri-Columbia, Columbia, MO 65211, USA.

Department of Physics, University of Missouri-Columbia.

出版信息

Commun Inf Syst. 2021;21(1):65-83. doi: 10.4310/cis.2021.v21.n1.a4.

Abstract

Because of their potential utility in predicting conformational changes and assessing folding dynamics, coarse-grained (CG) RNA folding models are appealing for rapid characterization of RNA molecules. Previously, we reported the iterative simulated RNA reference state (IsRNA) method for parameterizing a CG force field for RNA folding, which consecutively updates the simulation force field to reflect marginal distributions of folding coordinates in the structure database and extract various energy terms. While the IsRNA model was validated by showing close agreement between the IsRNA-simulated and experimentally observed distributions, here, we expand our theoretical understanding of the model and, in doing so, improve the parameterization process to optimize the subset of included folding coordinates, which leads to accelerated simulations. Using statistical mechanical theory, we analyze the underlying, Bayesian concept that drives parameterization of the energy function, providing a general method for developing predictive, knowledge-based, polymer force fields on the basis of limited data. Furthermore, we propose an optimal parameterization procedure, based on the principal of maximum entropy.

摘要

由于粗粒度(CG)RNA折叠模型在预测构象变化和评估折叠动力学方面具有潜在效用,因此对于快速表征RNA分子很有吸引力。此前,我们报道了用于为RNA折叠参数化CG力场的迭代模拟RNA参考状态(IsRNA)方法,该方法连续更新模拟力场以反映结构数据库中折叠坐标的边际分布并提取各种能量项。虽然通过显示IsRNA模拟分布与实验观察到的分布之间的密切一致性验证了IsRNA模型,但在此我们扩展了对该模型的理论理解,并在此过程中改进参数化过程以优化所包含折叠坐标的子集,从而加速模拟。利用统计力学理论,我们分析了驱动能量函数参数化的潜在贝叶斯概念,提供了一种基于有限数据开发预测性、基于知识的聚合物力场的通用方法。此外,我们基于最大熵原理提出了一种最优参数化程序。

相似文献

5
Ribonucleic Acid Folding Prediction Based on Iterative Multiscale Simulation.基于迭代多尺度模拟的核糖核酸折叠预测。
J Phys Chem Lett. 2022 Oct 27;13(42):9957-9966. doi: 10.1021/acs.jpclett.2c01342. Epub 2022 Oct 19.
7
Contrastive Learning of Coarse-Grained Force Fields.粗粒度力场的对比学习。
J Chem Theory Comput. 2022 Oct 11;18(10):6334-6344. doi: 10.1021/acs.jctc.2c00616. Epub 2022 Sep 16.
8
Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.粗粒度生物聚合物模型分析势的优化
J Phys Chem B. 2016 Aug 25;120(33):8571-9. doi: 10.1021/acs.jpcb.6b02555. Epub 2016 May 18.
10
A Maximum-Likelihood Approach to Force-Field Calibration.最大似然法在力场校准中的应用。
J Chem Inf Model. 2015 Sep 28;55(9):2050-70. doi: 10.1021/acs.jcim.5b00395. Epub 2015 Aug 20.

引用本文的文献

1
RNA-ligand molecular docking: advances and challenges.RNA-配体分子对接:进展与挑战
Wiley Interdiscip Rev Comput Mol Sci. 2022 May-Jun;12(3). doi: 10.1002/wcms.1571. Epub 2021 Aug 16.
2
RNA 3D Structure Prediction Using Coarse-Grained Models.使用粗粒度模型进行RNA三维结构预测。
Front Mol Biosci. 2021 Jul 2;8:720937. doi: 10.3389/fmolb.2021.720937. eCollection 2021.

本文引用的文献

2
Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins.最大熵优化力场用于无序蛋白质。
J Chem Theory Comput. 2020 Jan 14;16(1):773-781. doi: 10.1021/acs.jctc.9b00932. Epub 2019 Dec 13.
3
Relating Structure and Dynamics in RNA Biology.RNA 生物学中的结构与动力学关系
Cold Spring Harb Perspect Biol. 2019 Jul 1;11(7):a032474. doi: 10.1101/cshperspect.a032474.
4
Molecular Dynamics Simulation for All.分子动力学模拟概览。
Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.
8
Martini Coarse-Grained Force Field: Extension to RNA.马提尼粗粒度力场:对RNA的扩展
Biophys J. 2017 Jul 25;113(2):246-256. doi: 10.1016/j.bpj.2017.05.043. Epub 2017 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验