Suppr超能文献

用于RNA纳米技术应用的工程化RNA纳米设计

Engineered RNA Nanodesigns for Applications in RNA Nanotechnology.

作者信息

Afonin Kirill A, Lindsay Brian, Shapiro Bruce A

机构信息

Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA.

出版信息

DNA RNA Nanotechnol. 2015 Jan;1(1):1-15. doi: 10.2478/rnan-2013-0001. Epub 2013 May 31.

Abstract

Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.

摘要

由于其独特的生化特性和功能,核酸已成为纳米技术应用中极具前景的平台。特别是RNA,其特点是具有较高的热稳定性、多样的结构灵活性以及在自然界中执行多种功能的能力。这些特性使RNA成为生物纳米技术,特别是RNA纳米技术的宝贵平台,该技术可以通过基于各种现有RNA结构及其基本生化特性的强大机制的设计、整合和重新设计,创造出具有独特功能的纳米结构。本文综述强调了RNA纳米结构合理设计的基本原理,描述了构建自组装纳米颗粒的主要策略,并讨论了RNA纳米技术未来应用面临的挑战和可能性。

相似文献

1
Engineered RNA Nanodesigns for Applications in RNA Nanotechnology.
DNA RNA Nanotechnol. 2015 Jan;1(1):1-15. doi: 10.2478/rnan-2013-0001. Epub 2013 May 31.
2
RNA self-assembly and RNA nanotechnology.
Acc Chem Res. 2014 Jun 17;47(6):1871-80. doi: 10.1021/ar500076k. Epub 2014 May 23.
3
Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers.
Chem Rev. 2021 Nov 24;121(22):13797-13868. doi: 10.1021/acs.chemrev.0c01332. Epub 2021 Jun 22.
4
Angle-controllable RNA tiles for programable array assembly and RNA sensing.
Nat Commun. 2025 Apr 19;16(1):3728. doi: 10.1038/s41467-025-58938-5.
5
Near-Atomic Fabrication with Nucleic Acids.
ACS Nano. 2020 Feb 25;14(2):1319-1337. doi: 10.1021/acsnano.9b09163. Epub 2020 Jan 28.
6
Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
Curr Top Med Chem. 2022;22(8):652-667. doi: 10.2174/1568026622666220321140729.
7
A promising RNA nanotechnology in clinical therapeutics: a future perspective narrative review.
Future Sci OA. 2023 Jul 18;9(8):FSO883. doi: 10.2144/fsoa-2023-0067. eCollection 2023 Sep.
8
RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
J Nanosci Nanotechnol. 2005 Dec;5(12):1964-82. doi: 10.1166/jnn.2005.446.
9
A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects.
Int J Biol Macromol. 2025 Mar;295:139532. doi: 10.1016/j.ijbiomac.2025.139532. Epub 2025 Jan 5.
10

引用本文的文献

2
Light-Assisted Drying for the Thermal Stabilization of Nucleic Acid Nanoparticles and Other Biologics.
Methods Mol Biol. 2023;2709:117-130. doi: 10.1007/978-1-0716-3417-2_7.
3
Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles.
ACS Appl Mater Interfaces. 2023 May 31;15(21):25300-25312. doi: 10.1021/acsami.3c01604. Epub 2023 May 19.
4
Computational design and experimental verification of pseudoknotted ribozymes.
RNA. 2023 Jun;29(6):764-776. doi: 10.1261/rna.079148.122. Epub 2023 Mar 3.
5
The Application of Light-Assisted Drying to the Thermal Stabilization of Nucleic Acid Nanoparticles.
Biopreserv Biobank. 2022 Oct;20(5):451-460. doi: 10.1089/bio.2022.0035. Epub 2022 Sep 2.
6
Triggering RNAi with multifunctional RNA nanoparticles and their delivery.
DNA RNA Nanotechnol. 2015 Jan;2(1):1-12. doi: 10.1515/rnan-2015-0001. Epub 2015 Jul 27.
7
RNA and DNA nanoparticles for triggering RNA interference.
RNA Dis. 2015;2(Suppl 1). Epub 2015 Nov 29.
8
Radiolabeled RNA Nanoparticles for Highly Specific Targeting and Efficient Tumor Accumulation with Favorable Biodistribution.
Mol Pharm. 2021 Aug 2;18(8):2924-2934. doi: 10.1021/acs.molpharmaceut.1c00035. Epub 2021 Jul 2.
9
RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus.
RNA Biol. 2021 Dec;18(12):2390-2400. doi: 10.1080/15476286.2021.1915620. Epub 2021 Apr 29.

本文引用的文献

1
Activation of different split functionalities on re-association of RNA-DNA hybrids.
Nat Nanotechnol. 2013 Apr;8(4):296-304. doi: 10.1038/nnano.2013.44. Epub 2013 Mar 31.
2
Construction of a 4 zeptoliters switchable 3D DNA box origami.
ACS Nano. 2012 Nov 27;6(11):10050-3. doi: 10.1021/nn303767b. Epub 2012 Oct 8.
3
Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers.
Nano Today. 2012 Aug;7(4):245-257. doi: 10.1016/j.nantod.2012.06.010.
4
Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs.
Nano Lett. 2012 Oct 10;12(10):5192-5. doi: 10.1021/nl302302e. Epub 2012 Sep 27.
5
The right angle (RA) motif: a prevalent ribosomal RNA structural pattern found in group I introns.
J Mol Biol. 2012 Nov 23;424(1-2):54-67. doi: 10.1016/j.jmb.2012.09.012. Epub 2012 Sep 18.
6
De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15271-6. doi: 10.1073/pnas.1203831109. Epub 2012 Sep 4.
7
Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering.
Front Genet. 2012 Aug 20;3:154. doi: 10.3389/fgene.2012.00154. eCollection 2012.
8
Progress on RNAi-based molecular medicines.
Int J Nanomedicine. 2012;7:3971-80. doi: 10.2147/IJN.S31897. Epub 2012 Jul 26.
10
Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery.
Nat Nanotechnol. 2012 Jun 3;7(6):389-93. doi: 10.1038/nnano.2012.73.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验