Suppr超能文献

应用种间微阵列和蛋白质组学技术对变异链球菌酸应激反应的特性分析。

Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics.

机构信息

Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.

出版信息

Mol Oral Microbiol. 2010 Oct;25(5):331-42. doi: 10.1111/j.2041-1014.2010.00580.x.

Abstract

Streptococcus mutans and Streptococcus sobrinus are considered the primary organisms responsible for human dental caries. The ability to generate acids and to adapt to low pH conditions is directly associated with the cariogenic potential of these bacteria. To survive acidic conditions, both species have been shown to mount an acid-tolerance response (ATR). However, previous characterization of the S. sobrinus ATR identified critical differences in the mechanisms of acid adaptation between S. mutans and S. sobrinus. Here, interspecies microarray and proteomic approaches were used to identify novel, previously unrecognized genes and pathways that participate in the S. sobrinus acid-stress response. The results revealed that, among other things, metabolic alterations that enhance energy generation and upregulation of the malolactic fermentation enzyme activity constitute important acid-resistance properties in S. sobrinus. Some of these acid adaptive traits are shared by S. mutans and might be considered optimal targets for therapeutic treatments designed to control dental caries.

摘要

变形链球菌和远缘链球菌被认为是导致人类龋齿的主要病原体。产生酸和适应低 pH 值环境的能力与这些细菌的致龋潜能直接相关。为了在酸性环境中存活,这两种细菌都被证明会启动酸耐受反应(ATR)。然而,之前对远缘链球菌 ATR 的特征描述确定了变形链球菌和远缘链球菌在酸适应机制上的关键差异。在这里,种间微阵列和蛋白质组学方法被用于鉴定参与远缘链球菌酸应激反应的新的、以前未被识别的基因和途径。结果表明,除其他外,增强能量生成的代谢改变和上调苹果酸-乳酸发酵酶活性构成了远缘链球菌的重要耐酸特性。其中一些酸适应特性与变形链球菌共有,可能被认为是设计用于控制龋齿的治疗方法的最佳靶标。

相似文献

1
Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics.
Mol Oral Microbiol. 2010 Oct;25(5):331-42. doi: 10.1111/j.2041-1014.2010.00580.x.
4
Adaptive acid tolerance response of Streptococcus sobrinus.
J Bacteriol. 2004 Oct;186(19):6383-90. doi: 10.1128/JB.186.19.6383-6390.2004.
6
Streptococcus mutans and Streptococcus sobrinus biofilm formation and metabolic activity on dental materials.
Acta Odontol Scand. 2012 Mar;70(2):114-21. doi: 10.3109/00016357.2011.600703. Epub 2011 Jul 25.
10
Glycan-binding specificities of Streptococcus mutans and Streptococcus sobrinus lectin-like adhesins.
Clin Oral Investig. 2012 Jun;16(3):789-96. doi: 10.1007/s00784-011-0568-1. Epub 2011 Jun 17.

引用本文的文献

3
Acid Stress Response Mechanisms of Group B Streptococci.
Front Cell Infect Microbiol. 2017 Sep 7;7:395. doi: 10.3389/fcimb.2017.00395. eCollection 2017.
4
Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals.
Molecules. 2016 Feb 17;21(2):215. doi: 10.3390/molecules21020215.
5
Synergistic effect of xylitol and ursolic acid combination on oral biofilms.
Restor Dent Endod. 2014 Nov;39(4):288-95. doi: 10.5395/rde.2014.39.4.288. Epub 2014 Aug 27.
7
Insights into the virulence of oral biofilms: discoveries from proteomics.
Expert Rev Proteomics. 2012 Jun;9(3):311-23. doi: 10.1586/epr.12.16.
8
A five-species transcriptome array for oral mixed-biofilm studies.
PLoS One. 2011;6(12):e27827. doi: 10.1371/journal.pone.0027827. Epub 2011 Dec 14.
9
Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans.
Microbiology (Reading). 2011 Oct;157(Pt 10):2880-2890. doi: 10.1099/mic.0.052407-0. Epub 2011 Aug 4.

本文引用的文献

1
Role of intracellular polysaccharide in persistence of Streptococcus mutans.
J Bacteriol. 2009 Dec;191(23):7315-22. doi: 10.1128/JB.00425-09. Epub 2009 Oct 2.
2
Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation.
Microbiology (Reading). 2009 Oct;155(Pt 10):3322-3332. doi: 10.1099/mic.0.031591-0. Epub 2009 Jul 16.
3
The involvement of the pyruvate dehydrogenase E1alpha subunit, in Streptococcus mutans acid tolerance.
FEMS Microbiol Lett. 2008 Dec;289(1):13-9. doi: 10.1111/j.1574-6968.2008.01351.x.
4
A model of efficiency: stress tolerance by Streptococcus mutans.
Microbiology (Reading). 2008 Nov;154(Pt 11):3247-3255. doi: 10.1099/mic.0.2008/023770-0.
6
Malolactic fermentation by Streptococcus mutans.
FEMS Microbiol Lett. 2007 Jul;272(2):196-201. doi: 10.1111/j.1574-6968.2007.00744.x. Epub 2007 May 8.
7
Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR.
J Microbiol Methods. 2007 Mar;68(3):486-96. doi: 10.1016/j.mimet.2006.10.014. Epub 2006 Dec 14.
9
Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159.
J Bacteriol. 2006 Feb;188(3):834-41. doi: 10.1128/JB.188.3.834-841.2006.
10
The complex oral microflora of high-risk individuals and groups and its role in the caries process.
Community Dent Oral Epidemiol. 2005 Aug;33(4):248-55. doi: 10.1111/j.1600-0528.2005.00232.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验