Suppr超能文献

利用白质束追踪技术绘制大脑解剖连接图。

Mapping brain anatomical connectivity using white matter tractography.

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.

出版信息

NMR Biomed. 2010 Aug;23(7):821-35. doi: 10.1002/nbm.1579.

Abstract

Integration of the neural processes in the human brain is realized through interconnections that exist between different neural centers. These interconnections take place through white matter pathways. White matter tractography is currently the only available technique for the reconstruction of the anatomical connectivity in the human brain noninvasively and in vivo. The trajectory and terminations of white matter pathways are estimated from local orientations of nerve bundles. These orientations are obtained using measurements of water diffusion in the brain. In this article, the techniques for estimating fiber directions from diffusion measurements in the human brain are reviewed. Methods of white matter tractography are described, together with the current limitations of the technique, including sensitivity to image noise and partial voluming. The applications of white matter tractography to the topographical characterization of the white matter connections and the segmentation of specific white matter pathways, and corresponding functional units of gray matter, are discussed. In this context, the potential impact of white matter tractography in mapping the functional systems and subsystems in the human brain, and their interrelations, is described. Finally, the applications of white matter tractography to the study of brain disorders, including fiber tract localization in brains affected by tumors and the identification of impaired connectivity routes in neurologic and neuropsychiatric diseases, are discussed.

摘要

人类大脑中的神经过程通过不同神经中枢之间的连接实现整合。这些连接通过白质通路发生。目前,在不进行有创性和体内操作的情况下,对人脑进行解剖连接的重建,唯一可用的技术是白质束追踪技术。白质束追踪技术是从神经束的局部方向估计白质通路的轨迹和终点。这些方向是通过测量大脑中的水分子扩散获得的。本文回顾了从人脑扩散测量中估计纤维方向的技术。描述了白质束追踪方法,以及该技术的当前局限性,包括对图像噪声和部分容积效应的敏感性。讨论了白质束追踪在描绘白质连接的拓扑特征和特定白质通路以及相应的灰质功能单位,以及相应的功能单元的应用。在这种情况下,描述了白质束追踪在绘制人类大脑中的功能系统和子系统及其相互关系中的潜在影响。最后,讨论了白质束追踪在脑疾病研究中的应用,包括受肿瘤影响的大脑中的纤维束定位以及在神经和神经精神疾病中识别受损的连接路径。

相似文献

1
Mapping brain anatomical connectivity using white matter tractography.
NMR Biomed. 2010 Aug;23(7):821-35. doi: 10.1002/nbm.1579.
2
White matter tractography by means of Turboprop diffusion tensor imaging.
Ann N Y Acad Sci. 2005 Dec;1064:78-87. doi: 10.1196/annals.1340.014.
3
[Magnetic resonance tractography in neuroradiological diagnostic aspects].
Otolaryngol Pol. 2009 Sep-Oct;63(5):403-6. doi: 10.1016/S0030-6657(09)70151-9.
4
Estimating the confidence level of white matter connections obtained with MRI tractography.
PLoS One. 2008;3(12):e4006. doi: 10.1371/journal.pone.0004006. Epub 2008 Dec 23.
5
From diffusion tractography to quantitative white matter tract measures: a reproducibility study.
Neuroimage. 2003 Feb;18(2):348-59. doi: 10.1016/s1053-8119(02)00042-3.
6
7
Development of cerebral fiber pathways in cats revealed by diffusion spectrum imaging.
Neuroimage. 2010 Jan 15;49(2):1231-40. doi: 10.1016/j.neuroimage.2009.09.002. Epub 2009 Sep 8.
9
Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles.
Neuroimage. 2019 Sep;198:231-241. doi: 10.1016/j.neuroimage.2019.05.024. Epub 2019 May 16.
10
Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers.
Neuroimage. 2008 Jul 15;41(4):1267-77. doi: 10.1016/j.neuroimage.2008.03.036. Epub 2008 Apr 8.

引用本文的文献

1
Intra-voxel angular dispersion of fibers in corpus callosum decreases with healthy aging.
Imaging Neurosci (Camb). 2025 Jan 30;3. doi: 10.1162/imag_a_00463. eCollection 2025.
2
Uncinate fasciculus microstructural organisation and emotion recognition in schizophrenia: controlling for hit rate bias.
Front Behav Neurosci. 2024 Mar 19;18:1302916. doi: 10.3389/fnbeh.2024.1302916. eCollection 2024.
3
Cumulant expansion with localization: A new representation of the diffusion MRI signal.
Front Neuroimaging. 2022 Aug 17;1:958680. doi: 10.3389/fnimg.2022.958680. eCollection 2022.
5
Label-Free Chemically and Molecularly Selective Magnetic Resonance Imaging.
Chem Biomed Imaging. 2023 Apr 12;1(2):121-139. doi: 10.1021/cbmi.3c00019. eCollection 2023 May 22.
6
Visualization of human optic nerve by diffusion tensor mapping and degree of neuropathy.
PLoS One. 2022 Dec 12;17(12):e0278987. doi: 10.1371/journal.pone.0278987. eCollection 2022.
9
Learning white matter subject-specific segmentation from structural MRI.
Med Phys. 2022 Apr;49(4):2502-2513. doi: 10.1002/mp.15495. Epub 2022 Feb 7.

本文引用的文献

1
MRI quantification of non-Gaussian water diffusion by kurtosis analysis.
NMR Biomed. 2010 Aug;23(7):698-710. doi: 10.1002/nbm.1518.
3
Functional brain networks in schizophrenia: a review.
Front Hum Neurosci. 2009 Aug 17;3:17. doi: 10.3389/neuro.09.017.2009. eCollection 2009.
4
Genetic white matter fiber tractography with global optimization.
J Neurosci Methods. 2009 Nov 15;184(2):375-9. doi: 10.1016/j.jneumeth.2009.07.032. Epub 2009 Aug 8.
5
Combinatorial fiber-tracking of the human brain.
Neuroimage. 2009 Nov 15;48(3):532-40. doi: 10.1016/j.neuroimage.2009.05.086. Epub 2009 Jun 6.
7
Neurodegenerative diseases target large-scale human brain networks.
Neuron. 2009 Apr 16;62(1):42-52. doi: 10.1016/j.neuron.2009.03.024.
8
High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession.
Neuroimage. 2009 Jul 1;46(3):775-85. doi: 10.1016/j.neuroimage.2009.01.008. Epub 2009 Jan 22.
9
Unified bundling and registration of brain white matter fibers.
IEEE Trans Med Imaging. 2009 Sep;28(9):1399-411. doi: 10.1109/TMI.2009.2016337. Epub 2009 Mar 24.
10
Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis.
IEEE Trans Med Imaging. 2009 Apr;28(4):535-50. doi: 10.1109/TMI.2008.2006528. Epub 2008 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验