Suppr超能文献

具有局域化的累积量展开:扩散磁共振成像信号的一种新表示

Cumulant expansion with localization: A new representation of the diffusion MRI signal.

作者信息

Afzali Maryam, Pieciak Tomasz, Jones Derek K, Schneider Jürgen E, Özarslan Evren

机构信息

Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.

出版信息

Front Neuroimaging. 2022 Aug 17;1:958680. doi: 10.3389/fnimg.2022.958680. eCollection 2022.

Abstract

Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low -value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths. Here, we propose a new representation for the diffusion MR signal. Our method provides not only a robust estimate of the first three cumulants but also a meaningful extrapolation of the entire signal decay.

摘要

扩散磁共振对样本的微观结构特征敏感。通过采用强扩散梯度可以探测精细尺度特征,而低值区域由粒子位移分布的累积量决定。然而,基于累积量的信号表示存在有限的收敛半径,无法表示在大梯度强度下出现的以拉伸指数衰减为特征的“定位区域”。在此,我们提出一种新的扩散磁共振信号表示方法。我们的方法不仅能对前三个累积量进行稳健估计,还能对整个信号衰减进行有意义的外推。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验