Suppr超能文献

脑白质纤维的统一捆绑与配准

Unified bundling and registration of brain white matter fibers.

作者信息

Xu Qing, Anderson Adam W, Gore John C, Ding Zhaohua

机构信息

Vanderbilt University Institute of Imaging Science, Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

IEEE Trans Med Imaging. 2009 Sep;28(9):1399-411. doi: 10.1109/TMI.2009.2016337. Epub 2009 Mar 24.

Abstract

Magnetic resonance diffusion tensor imaging is being widely used to reconstruct brain white matter fiber tracts. To characterize structural properties of the tracts, reconstructed fibers are often grouped into bundles that correspond to coherent anatomic structures. For further group analysis of fiber bundles, it is desirable that corresponding bundles from different studies are coregistered. To address these needs simultaneously, a unified fiber bundling and registration (UFIBRE) framework is proposed in this work. The framework is based on maximizing a posteriori Bayesian probabilities using an expectation maximization algorithm. Given a set of segmented template bundles and a whole-brain target fiber set, the UFIBRE algorithm optimally bundles the target fibers and registers them with the template. The bundling component in the UFIBRE algorithm simplifies fiber-based registration into bundle-to-bundle registration, and the registration component in turn guides the bundling process to find bundles consistent with the template. Experiments with in vivo data demonstrate that the estimated bundles have an approximately 80% consistency with ground truth and the root mean square error between their bundle medial axes is less than one voxel. The proposed algorithm is highly efficient, offering potential routine use for group analysis of white matter fibers.

摘要

磁共振扩散张量成像正被广泛用于重建脑白质纤维束。为了表征纤维束的结构特性,重建的纤维通常被分组为与连贯解剖结构相对应的束。为了对纤维束进行进一步的分组分析,希望将来自不同研究的相应束进行配准。为了同时满足这些需求,本文提出了一种统一的纤维束捆绑和配准(UFIBRE)框架。该框架基于使用期望最大化算法最大化后验贝叶斯概率。给定一组分割的模板束和全脑目标纤维集,UFIBRE算法对目标纤维进行最优捆绑,并将它们与模板配准。UFIBRE算法中的捆绑组件将基于纤维的配准简化为束到束的配准,而配准组件又反过来指导捆绑过程以找到与模板一致的束。体内数据实验表明,估计的束与真实情况具有约80%的一致性,并且它们的束中轴线之间的均方根误差小于一个体素。所提出的算法效率很高,为白质纤维的分组分析提供了潜在的常规应用。

相似文献

1
Unified bundling and registration of brain white matter fibers.脑白质纤维的统一捆绑与配准
IEEE Trans Med Imaging. 2009 Sep;28(9):1399-411. doi: 10.1109/TMI.2009.2016337. Epub 2009 Mar 24.
4
Framework for shape analysis of white matter fiber bundles.用于白质纤维束形状分析的框架。
Neuroimage. 2018 Feb 15;167:466-477. doi: 10.1016/j.neuroimage.2017.11.052. Epub 2017 Dec 2.
6
Functional clustering of whole brain white matter fibers.全脑白质纤维的功能聚类
J Neurosci Methods. 2020 Apr 1;335:108626. doi: 10.1016/j.jneumeth.2020.108626. Epub 2020 Feb 4.

本文引用的文献

1
Clustering Fiber Traces Using Normalized Cuts.使用归一化割算法对纤维轨迹进行聚类
Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.
4
Nonlinear registration of diffusion MR images based on fiber bundles.基于纤维束的扩散磁共振图像非线性配准
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):351-8. doi: 10.1007/978-3-540-75757-3_43.
7
Analysis of brain white matter via fiber tract modeling.通过纤维束建模分析脑白质。
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4421-4. doi: 10.1109/IEMBS.2004.1404229.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验