Suppr超能文献

脑肿瘤的弥散成像。

Diffusion imaging of brain tumors.

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

NMR Biomed. 2010 Aug;23(7):849-64. doi: 10.1002/nbm.1544.

Abstract

MRI offers a tremendous armamentarium of different methods that can be employed in brain tumor characterization. MR diffusion imaging has become a widely accepted method to probe for the presence of fluid pools and molecular tissue water mobility. For most clinical applications of diffusion imaging, it is assumed that the diffusion signal vs diffusion weighting factor b decays monoexponentially. Within this framework, the measurement of a single diffusion coefficient in brain tumors permits an approximate categorization of tumor type and, for some tumors, definitive diagnosis. In most brain tumors, when compared with normal brain tissue, the diffusion coefficient is elevated. The presence of peritumoral edema, which also exhibits an elevated diffusion coefficient, often precludes the delineation of the tumor on the basis of diffusion information alone. Serially obtained diffusion data are useful to document and even predict the cellular response to drug or radiation therapy. Diffusion measurements in tissues over an extended range of b factors have clearly shown that the monoparametric description of the MR diffusion signal decay is incomplete. Very high diffusion weighting on clinical systems requires substantial compromise in spatial resolution. However, after suitable analysis, superior separation of malignant brain tumors, peritumoral edema and normal brain tissue can be achieved. These findings are also discussed in the light of tissue-specific differences in membrane structure and the restrictions exerted by membranes on diffusion. Finally, measurement of the directional dependence of diffusion permits the assessment of white matter integrity and dislocation. Such information, particularly in conjunction with advanced post-processing, is considered to be immensely useful for therapy planning. Diffusion imaging, which permits monoexponential analysis and provides directional diffusion information, is performed routinely in brain tumor patients. More advanced methods require improvement in acquisition speed and spatial resolution to gain clinical acceptance.

摘要

磁共振成像提供了大量不同的方法,可用于脑肿瘤特征描述。磁共振扩散成像是一种广泛接受的方法,用于探测液体池和分子组织水流动性的存在。对于扩散成像的大多数临床应用,假设扩散信号与扩散加权因子 b 的衰减呈单指数关系。在这个框架内,测量脑肿瘤中的单个扩散系数可以对肿瘤类型进行近似分类,并且对于某些肿瘤可以进行明确诊断。在大多数脑肿瘤中,与正常脑组织相比,扩散系数升高。肿瘤周围水肿的存在也表现出升高的扩散系数,这常常排除了仅基于扩散信息对肿瘤进行描绘的可能性。连续获得的扩散数据可用于记录甚至预测细胞对药物或放射治疗的反应。在广泛的 b 值范围内对组织进行扩散测量清楚地表明,对磁共振扩散信号衰减的单参数描述是不完整的。在临床系统上进行非常高的扩散加权需要在空间分辨率上做出重大妥协。然而,经过适当的分析,可以实现对恶性脑肿瘤、肿瘤周围水肿和正常脑组织的更好分离。这些发现也结合组织中膜结构的特异性差异以及膜对扩散的限制进行了讨论。最后,测量扩散的方向依赖性允许评估白质的完整性和错位。这些信息,特别是与先进的后处理相结合,被认为对治疗计划非常有用。扩散成像允许进行单指数分析并提供方向扩散信息,在脑肿瘤患者中常规进行。更先进的方法需要提高采集速度和空间分辨率才能获得临床认可。

相似文献

1
Diffusion imaging of brain tumors.
NMR Biomed. 2010 Aug;23(7):849-64. doi: 10.1002/nbm.1544.
5
Diffusion MR imaging: an important tool in the assessment of brain tumors.
Neuroimaging Clin N Am. 2011 Feb;21(1):27-49, vii. doi: 10.1016/j.nic.2011.01.010.
10
Effect of intravenous gadolinium-DTPA on diffusion tensor MR imaging for the evaluation of brain tumors.
Neuroradiology. 2009 Dec;51(12):793-802. doi: 10.1007/s00234-009-0571-2. Epub 2009 Jul 28.

引用本文的文献

1
Detecting glioblastoma infiltration beyond conventional imaging tumour margins using MTE-NODDI.
Imaging Neurosci (Camb). 2025 Feb 18;3. doi: 10.1162/imag_a_00472. eCollection 2025.
3
High-resolution, volumetric diffusion-weighted MR spectroscopic imaging of the brain.
Magn Reson Med. 2025 Aug;94(2):450-469. doi: 10.1002/mrm.30479. Epub 2025 Mar 10.
4
7
Prognostic Value of Apparent Diffusion Coefficient (ADC) in Patients with Diffuse Gliomas.
Cancers (Basel). 2024 Feb 6;16(4):681. doi: 10.3390/cancers16040681.
8
Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration.
Front Radiol. 2023 Dec 13;3:1267615. doi: 10.3389/fradi.2023.1267615. eCollection 2023.
9
A tri-phasic relationship between T2 relaxation time and magnetic resonance imaging (MRI)-derived apparent diffusion coefficient (ADC).
Quant Imaging Med Surg. 2023 Dec 1;13(12):8873-8880. doi: 10.21037/qims-23-1342. Epub 2023 Sep 28.
10
Diffusion MRI anomaly detection in glioma patients.
Sci Rep. 2023 Nov 21;13(1):20366. doi: 10.1038/s41598-023-47563-1.

本文引用的文献

1
Studies of anomalous diffusion in the human brain using fractional order calculus.
Magn Reson Med. 2010 Mar;63(3):562-9. doi: 10.1002/mrm.22285.
2
Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences.
Radiology. 2010 Mar;254(3):876-81. doi: 10.1148/radiol.09090819. Epub 2010 Jan 20.
3
Robust GRAPPA-accelerated diffusion-weighted readout-segmented (RS)-EPI.
Magn Reson Med. 2009 Dec;62(6):1629-40. doi: 10.1002/mrm.22122.
5
Intravoxel water diffusion heterogeneity imaging of human high-grade gliomas.
NMR Biomed. 2010 Feb;23(2):179-87. doi: 10.1002/nbm.1441.
7
High b-value apparent diffusion-weighted images from CURVE-ball DTI.
J Magn Reson Imaging. 2009 Jul;30(1):243-8. doi: 10.1002/jmri.21808.
8
On high b diffusion imaging in the human brain: ruminations and experimental insights.
Magn Reson Imaging. 2009 Oct;27(8):1151-62. doi: 10.1016/j.mri.2009.05.003. Epub 2009 Jun 10.
9
10
Predicting the histopathological grade of cerebral gliomas using high b value MR DW imaging at 3-tesla.
J Neuroimaging. 2008 Jul;18(3):276-81. doi: 10.1111/j.1552-6569.2008.00263.x. Epub 2008 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验