Hakhu Sasha, Hareesh Parvathy, Hooyman Andrew, VanGilder Jennapher Lingo, Yalim Jason, Baxter Leslie, Hu Leland, Zhou Yuxiang, Schilling Kurt, Beeman Scott C
School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ.
Computational Research Accelerator, Arizona State University, Tempe, AZ.
medRxiv. 2025 Apr 8:2025.04.07.25325393. doi: 10.1101/2025.04.07.25325393.
White matter (WM) tract detection is critical in presurgical planning of tumor resection; however, standard-of-care diffusion tensor imaging (DTI) often fails to characterize white matter tracts through regions of edema. This is because the presence of edema has the effect of increasing the isotropic volume fraction within a voxel and thus marginalizing the anisotropic volume fraction associated with white matter presence and directionality. More recent biophysical models of diffusion, such as neurite orientation dispersion and density imaging (NODDI), account for isotropic and anisotropic volume fractions within voxels by compartmentalizing the diffusion signal based on an assumed tissue microenvironment, e.g., "free water" (cerebrospinal fluid (CSF), interstitial fluid (ISF), edema), "intra-neurite", and "extra-neurite" tissue, as a sphere, stick, and tensor, respectively. We hypothesize that a low fractional anisotropy (FA), low orientation dispersion index (ODI) value and high fractional isotropic volume (FISO) would be observed in white matter regions containing edema but a high FA, low ODI value and low FISO would be observed in healthy-appearing contralateral white matter. In our study, we test this hypothesis using multi-shell diffusion MRI data collected from patients bearing meningioma brains tumors. Brains bearing meningioma tumors are selected in this study as meningiomas rarely invade the brain parenchyma and we can thus assume that our analyses of edematous regions are not confounded by infiltrating tumor cells. Here, we show that NODDI-based characterization of white matter is more sensitive than that of standard-of-care DTI through regions of edema. Future studies will focus on implementation of biophysical model-based tractography in cases of glioma and translation of biophysical model-based tractography to the operating room.
白质(WM)束检测在肿瘤切除术前规划中至关重要;然而,标准的护理扩散张量成像(DTI)常常无法通过水肿区域对白质束进行特征描述。这是因为水肿的存在会增加体素内各向同性体积分数,从而使与白质存在和方向性相关的各向异性体积分数边缘化。更新的扩散生物物理模型,如神经突方向离散度和密度成像(NODDI),通过基于假定的组织微环境(例如“自由水”(脑脊液(CSF)、组织间液(ISF)、水肿)、“神经突内”和“神经突外”组织)将扩散信号进行分区,来解释体素内的各向同性和各向异性体积分数,分别对应为球体、棒状体和张量。我们假设,在含有水肿的白质区域会观察到低分数各向异性(FA)、低方向离散度指数(ODI)值和高分数各向同性体积(FISO),而在外观正常的对侧白质中会观察到高FA、低ODI值和低FISO。在我们的研究中,我们使用从患有脑膜瘤脑肿瘤的患者收集的多壳扩散磁共振成像(MRI)数据来检验这一假设。本研究选择患有脑膜瘤肿瘤的大脑,因为脑膜瘤很少侵犯脑实质,因此我们可以假设我们对水肿区域的分析不会受到浸润肿瘤细胞的干扰。在这里,我们表明,基于NODDI的白质特征描述在通过水肿区域时比标准护理DTI更敏感。未来的研究将集中于在胶质瘤病例中实施基于生物物理模型的纤维束成像,并将基于生物物理模型的纤维束成像应用于手术室。