Suppr超能文献

活细胞荧光光谱成像作为一项数据科学挑战。

Live-cell fluorescence spectral imaging as a data science challenge.

作者信息

Acuña-Rodriguez Jessy Pamela, Mena-Vega Jean Paul, Argüello-Miranda Orlando

机构信息

Center for Geophysical Research (CIGEFI), University of Costa Rica, San Pedro, San José Costa Rica.

School of Physics, University of Costa Rica, 2060 San Pedro, San José Costa Rica.

出版信息

Biophys Rev. 2022 Mar 23;14(2):579-597. doi: 10.1007/s12551-022-00941-x. eCollection 2022 Apr.

Abstract

Live-cell fluorescence spectral imaging is an evolving modality of microscopy that uses specific properties of fluorophores, such as excitation or emission spectra, to detect multiple molecules and structures in intact cells. The main challenge of analyzing live-cell fluorescence spectral imaging data is the precise quantification of fluorescent molecules despite the weak signals and high noise found when imaging living cells under non-phototoxic conditions. Beyond the optimization of fluorophores and microscopy setups, quantifying multiple fluorophores requires algorithms that separate or unmix the contributions of the numerous fluorescent signals recorded at the single pixel level. This review aims to provide both the experimental scientist and the data analyst with a straightforward description of the evolution of spectral unmixing algorithms for fluorescence live-cell imaging. We show how the initial systems of linear equations used to determine the concentration of fluorophores in a pixel progressively evolved into matrix factorization, clustering, and deep learning approaches. We outline potential future trends on combining fluorescence spectral imaging with label-free detection methods, fluorescence lifetime imaging, and deep learning image analysis.

摘要

活细胞荧光光谱成像是一种不断发展的显微镜技术,它利用荧光团的特定特性,如激发光谱或发射光谱,来检测完整细胞中的多种分子和结构。分析活细胞荧光光谱成像数据的主要挑战在于,尽管在非光毒性条件下对活细胞进行成像时信号微弱且噪声很高,但仍要精确量化荧光分子。除了优化荧光团和显微镜设置外,量化多种荧光团需要能够分离或分解在单个像素水平记录的大量荧光信号贡献的算法。本综述旨在为实验科学家和数据分析师提供关于荧光活细胞成像光谱分解算法发展的直观描述。我们展示了最初用于确定像素中荧光团浓度的线性方程组是如何逐步演变为矩阵分解、聚类和深度学习方法的。我们概述了将荧光光谱成像与无标记检测方法、荧光寿命成像和深度学习图像分析相结合的潜在未来趋势。

相似文献

1
Live-cell fluorescence spectral imaging as a data science challenge.活细胞荧光光谱成像作为一项数据科学挑战。
Biophys Rev. 2022 Mar 23;14(2):579-597. doi: 10.1007/s12551-022-00941-x. eCollection 2022 Apr.
7
Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.120种不同荧光标记的多重光谱成像
PLoS One. 2016 Jul 8;11(7):e0158495. doi: 10.1371/journal.pone.0158495. eCollection 2016.
8
Multispectral Live-Cell Imaging.多光谱活细胞成像
Curr Protoc Cell Biol. 2018 Jun;79(1):e46. doi: 10.1002/cpcb.46. Epub 2018 May 14.
9
UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.UNMIX-ME:通过深度学习实现光谱和寿命荧光解混
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.

引用本文的文献

7
Super-multiplexing excitation spectral microscopy with multiple fluorescence bands.具有多个荧光带的超复用激发光谱显微镜
Biomed Opt Express. 2022 Oct 27;13(11):6048-6060. doi: 10.1364/BOE.473241. eCollection 2022 Nov 1.
8
Biophysical Reviews: focusing on an issue.《生物物理评论》:聚焦一个问题。
Biophys Rev. 2022 Apr 19;14(2):413-416. doi: 10.1007/s12551-022-00953-7. eCollection 2022 Apr.

本文引用的文献

2
High-speed fluorescence image-enabled cell sorting.高速荧光图像引导的细胞分选。
Science. 2022 Jan 21;375(6578):315-320. doi: 10.1126/science.abj3013. Epub 2022 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验