Acuña-Rodriguez Jessy Pamela, Mena-Vega Jean Paul, Argüello-Miranda Orlando
Center for Geophysical Research (CIGEFI), University of Costa Rica, San Pedro, San José Costa Rica.
School of Physics, University of Costa Rica, 2060 San Pedro, San José Costa Rica.
Biophys Rev. 2022 Mar 23;14(2):579-597. doi: 10.1007/s12551-022-00941-x. eCollection 2022 Apr.
Live-cell fluorescence spectral imaging is an evolving modality of microscopy that uses specific properties of fluorophores, such as excitation or emission spectra, to detect multiple molecules and structures in intact cells. The main challenge of analyzing live-cell fluorescence spectral imaging data is the precise quantification of fluorescent molecules despite the weak signals and high noise found when imaging living cells under non-phototoxic conditions. Beyond the optimization of fluorophores and microscopy setups, quantifying multiple fluorophores requires algorithms that separate or unmix the contributions of the numerous fluorescent signals recorded at the single pixel level. This review aims to provide both the experimental scientist and the data analyst with a straightforward description of the evolution of spectral unmixing algorithms for fluorescence live-cell imaging. We show how the initial systems of linear equations used to determine the concentration of fluorophores in a pixel progressively evolved into matrix factorization, clustering, and deep learning approaches. We outline potential future trends on combining fluorescence spectral imaging with label-free detection methods, fluorescence lifetime imaging, and deep learning image analysis.
活细胞荧光光谱成像是一种不断发展的显微镜技术,它利用荧光团的特定特性,如激发光谱或发射光谱,来检测完整细胞中的多种分子和结构。分析活细胞荧光光谱成像数据的主要挑战在于,尽管在非光毒性条件下对活细胞进行成像时信号微弱且噪声很高,但仍要精确量化荧光分子。除了优化荧光团和显微镜设置外,量化多种荧光团需要能够分离或分解在单个像素水平记录的大量荧光信号贡献的算法。本综述旨在为实验科学家和数据分析师提供关于荧光活细胞成像光谱分解算法发展的直观描述。我们展示了最初用于确定像素中荧光团浓度的线性方程组是如何逐步演变为矩阵分解、聚类和深度学习方法的。我们概述了将荧光光谱成像与无标记检测方法、荧光寿命成像和深度学习图像分析相结合的潜在未来趋势。