Suppr超能文献

使用 DAPI 通道参考评估进行多重免疫荧光图像质量检查。

Multiplex Immunofluorescence Image Quality Checking Using DAPI Channel-referenced Evaluation.

机构信息

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.

出版信息

J Histochem Cytochem. 2023 Mar;71(3):121-130. doi: 10.1369/00221554231161693. Epub 2023 Mar 24.

Abstract

Multiplex immunofluorescence (MxIF) images provide detailed information of cell composition and spatial context for biomedical research. However, compromised data quality could lead to research biases. Comprehensive image quality checking (QC) is essential for reliable downstream analysis. As a reliable and specific staining of cell nuclei, 4',6-diamidino-2-phenylindole (DAPI) signals were used as references for tissue localization and auto-focusing across MxIF staining-scanning-bleaching iterations and could potentially be reused for QC. To confirm the feasibility of using DAPI as QC reference, pixel-level DAPI values were extracted to calculate signal fluctuations and tissue content similarities in staining-scanning-bleaching iterations for identifying quality issues. Concordance between automatic quantification and human experts' annotations were evaluated on a data set consisting of 348 fields of view (FOVs) with 45 immune and tumor cell markers. Cell distribution differences between subsets of QC-pass vs QC-failed FOVs were compared to investigate the downstream effects. Results showed that 87.3% FOVs with tissue damage and 73.4% of artifacts were identified. QC-failed FOVs showed elevated regional gathering in cellular feature space compared with the QC-pass FOVs. Our results supported that DAPI signals could be used as references for MxIF image QC, and low-quality FOVs identified by our method must be cautiously considered for downstream analyses.

摘要

多重免疫荧光(MxIF)图像为生物医学研究提供了细胞组成和空间背景的详细信息。然而,数据质量的下降可能会导致研究出现偏差。全面的图像质量检查(QC)对于可靠的下游分析至关重要。4',6-二脒基-2-苯基吲哚(DAPI)作为细胞核的可靠且特异性染色,可以作为组织定位和自动聚焦的参考,适用于 MxIF 染色-扫描-漂白迭代,并且可以重复用于 QC。为了确认使用 DAPI 作为 QC 参考的可行性,提取了像素级 DAPI 值,以计算染色-扫描-漂白迭代中的信号波动和组织内容相似性,从而识别质量问题。在包含 348 个视野(FOV)和 45 个免疫和肿瘤细胞标志物的数据集上,评估了自动定量和人类专家注释之间的一致性。比较了 QC 通过与 QC 失败的 FOV 之间的细胞分布差异,以研究下游影响。结果表明,有 87.3%的 FOV 存在组织损伤,73.4%的 FOV 存在伪影。与 QC 通过的 FOV 相比,QC 失败的 FOV 显示出细胞特征空间中区域聚集度升高。我们的研究结果表明,DAPI 信号可作为 MxIF 图像 QC 的参考,必须谨慎考虑本方法识别的低质量 FOV 进行下游分析。

相似文献

4
Inpainting Missing Tissue in Multiplexed Immunofluorescence Imaging.多重免疫荧光成像中缺失组织的修复
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12039. doi: 10.1117/12.2611827. Epub 2022 Apr 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验