Suppr超能文献

真菌碳代谢中的细胞内乙酰单位转运

Intracellular acetyl unit transport in fungal carbon metabolism.

作者信息

Strijbis Karin, Distel Ben

机构信息

Dept. of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, Netherlands.

出版信息

Eukaryot Cell. 2010 Dec;9(12):1809-15. doi: 10.1128/EC.00172-10. Epub 2010 Oct 1.

Abstract

Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming acetyl-carnitine, which can be transported between subcellular compartments. Citrate synthase catalyzes the condensation of oxaloacetate and acetyl-CoA to form citrate that can be transported over the membrane. Since essential metabolic pathways such as fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle are physically separated into different organelles, shuttling of acetyl units is essential for growth of fungal species on various carbon sources such as fatty acids, ethanol, acetate, or citrate. In this review we summarize the current knowledge on the different systems of acetyl transport that are operational during alternative carbon metabolism, with special focus on two fungal species: Saccharomyces cerevisiae and Candida albicans.

摘要

乙酰辅酶A(acetyl-CoA)是碳代谢和能量代谢中的一种核心代谢物。由于其两亲性和较大的体积,乙酰辅酶A不易穿过生物膜。在真菌中,已鉴定出两种乙酰单位转运系统:一种依赖于载体肉碱的穿梭系统和一种(过氧化物酶体)依赖柠檬酸合酶的途径。在依赖肉碱的途径中,肉碱乙酰转移酶将乙酰辅酶A的辅酶A基团与肉碱交换,从而形成乙酰肉碱,后者可在亚细胞区室之间转运。柠檬酸合酶催化草酰乙酸和乙酰辅酶A缩合形成柠檬酸,柠檬酸可通过膜转运。由于脂肪酸β氧化、三羧酸(TCA)循环和乙醛酸循环等基本代谢途径在物理上分隔在不同的细胞器中,乙酰单位的穿梭对于真菌在脂肪酸、乙醇、乙酸或柠檬酸等各种碳源上生长至关重要。在本综述中,我们总结了目前关于在替代碳代谢过程中起作用的不同乙酰转运系统的知识,特别关注两种真菌:酿酒酵母和白色念珠菌。

相似文献

1
Intracellular acetyl unit transport in fungal carbon metabolism.
Eukaryot Cell. 2010 Dec;9(12):1809-15. doi: 10.1128/EC.00172-10. Epub 2010 Oct 1.
2
Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
Eukaryot Cell. 2008 Oct;7(10):1733-41. doi: 10.1128/EC.00253-08. Epub 2008 Aug 8.
4
Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans.
Eukaryot Cell. 2011 Apr;10(4):547-55. doi: 10.1128/EC.00295-10. Epub 2011 Feb 4.
5
Contributions of carnitine acetyltransferases to intracellular acetyl unit transport in Candida albicans.
J Biol Chem. 2010 Aug 6;285(32):24335-46. doi: 10.1074/jbc.M109.094250. Epub 2010 Jun 3.
9
Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.
PLoS One. 2012;7(8):e42475. doi: 10.1371/journal.pone.0042475. Epub 2012 Aug 2.

引用本文的文献

2
Metabolism and Growth Preferences in Physiologically Relevant Skin-like Conditions.
bioRxiv. 2025 May 19:2025.05.18.654780. doi: 10.1101/2025.05.18.654780.
3
Transcriptomic and metabolomic analysis of recalcitrant phosphorus solubilization mechanisms in .
Front Microbiol. 2025 Feb 4;16:1520459. doi: 10.3389/fmicb.2025.1520459. eCollection 2025.
5
Genetic and Physiological Characterization of the Pentose Phosphate Pathway in the Yeast .
Int J Mol Sci. 2025 Jan 23;26(3):938. doi: 10.3390/ijms26030938.
7
Decarboxylase mediated oxalic acid metabolism is important to antioxidation and detoxification rather than pathogenicity in .
Virulence. 2025 Dec;16(1):2444690. doi: 10.1080/21505594.2024.2444690. Epub 2025 Jan 26.
8
Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid.
BMC Microbiol. 2024 May 8;24(1):158. doi: 10.1186/s12866-024-03314-4.
9
Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.
10

本文引用的文献

1
Contributions of carnitine acetyltransferases to intracellular acetyl unit transport in Candida albicans.
J Biol Chem. 2010 Aug 6;285(32):24335-46. doi: 10.1074/jbc.M109.094250. Epub 2010 Jun 3.
2
Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans.
PLoS Pathog. 2009 Oct;5(10):e1000612. doi: 10.1371/journal.ppat.1000612. Epub 2009 Oct 9.
3
The transcription factor homolog CTF1 regulates {beta}-oxidation in Candida albicans.
Eukaryot Cell. 2009 Oct;8(10):1604-14. doi: 10.1128/EC.00206-09. Epub 2009 Aug 21.
4
Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane.
PLoS One. 2009;4(4):e5090. doi: 10.1371/journal.pone.0005090. Epub 2009 Apr 7.
5
Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification.
Fungal Genet Biol. 2009 Jun-Jul;46(6-7):473-85. doi: 10.1016/j.fgb.2009.03.004. Epub 2009 Mar 17.
6
Identification and characterization of a complete carnitine biosynthesis pathway in Candida albicans.
FASEB J. 2009 Aug;23(8):2349-59. doi: 10.1096/fj.08-127985. Epub 2009 Mar 16.
7
Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae.
FEBS J. 2009 Mar;276(6):1698-708. doi: 10.1111/j.1742-4658.2009.06903.x. Epub 2009 Feb 13.
9
Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
Eukaryot Cell. 2008 Oct;7(10):1733-41. doi: 10.1128/EC.00253-08. Epub 2008 Aug 8.
10
Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection.
Curr Genet. 2008 Jun;53(6):347-60. doi: 10.1007/s00294-008-0191-0. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验