Suppr超能文献

乙酰辅酶A合成与分解在白色念珠菌利用替代碳源中的作用

Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.

作者信息

Carman Aaron J, Vylkova Slavena, Lorenz Michael C

机构信息

Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center atHouston, Houston, Texas 77030, USA.

出版信息

Eukaryot Cell. 2008 Oct;7(10):1733-41. doi: 10.1128/EC.00253-08. Epub 2008 Aug 8.

Abstract

Acetyl coenzyme A (acetyl-CoA) is the central intermediate of the pathways required to metabolize nonfermentable carbon sources. Three such pathways, i.e., gluconeogenesis, the glyoxylate cycle, and beta-oxidation, are required for full virulence in the fungal pathogen Candida albicans. These processes are compartmentalized in the cytosol, mitochondria, and peroxosomes, necessitating transport of intermediates across intracellular membranes. Acetyl-CoA is trafficked in the form of acetate by the carnitine shuttle, and we hypothesized that the enzymes that convert acetyl-CoA to/from acetate, i.e., acetyl-CoA hydrolase (ACH1) and acetyl-CoA synthetase (ACS1 and ACS2), would regulate alternative carbon utilization and virulence. We show that C. albicans strains depleted for ACS2 are unviable in the presence of most carbon sources, including glucose, acetate, and ethanol; these strains metabolize only fatty acids and glycerol, a substantially more severe phenotype than that of Saccharomyces cerevisiae acs2 mutants. In contrast, deletion of ACS1 confers no phenotype, though it is highly induced in the presence of fatty acids, perhaps explaining why acs2 mutants can utilize fatty acids. Strains lacking ACH1 have a mild growth defect on some carbon sources but are fully virulent in a mouse model of disseminated candidiasis. Both ACH1 and ACS2 complement mutations in their S. cerevisiae homolog. Together, these results show that acetyl-CoA metabolism and transport are critical for growth of C. albicans on a wide variety of nutrients. Furthermore, the phenotypic differences between mutations in these highly conserved genes in S. cerevisiae and C. albicans support recent findings that significant functional divergence exists even in fundamental metabolic pathways between these related yeasts.

摘要

乙酰辅酶A(acetyl-CoA)是代谢不可发酵碳源所需途径的核心中间体。白色念珠菌这一真菌病原体要实现完全毒力,需要三种这样的途径,即糖异生、乙醛酸循环和β-氧化。这些过程分别在细胞质、线粒体和过氧化物酶体中进行,这就需要中间体跨细胞内膜运输。乙酰辅酶A以乙酸盐的形式通过肉碱穿梭系统进行转运,我们推测将乙酰辅酶A转化为乙酸盐或从乙酸盐转化为乙酰辅酶A的酶,即乙酰辅酶A水解酶(ACH1)和乙酰辅酶A合成酶(ACS1和ACS2),会调节碳源的交替利用和毒力。我们发现,在大多数碳源(包括葡萄糖、乙酸盐和乙醇)存在的情况下,缺失ACS2的白色念珠菌菌株无法存活;这些菌株只能代谢脂肪酸和甘油,其表型比酿酒酵母acs2突变体严重得多。相比之下,缺失ACS1没有产生表型,不过在脂肪酸存在的情况下它会被高度诱导,这或许可以解释acs2突变体为何能够利用脂肪酸。缺乏ACH1的菌株在某些碳源上有轻微的生长缺陷,但在播散性念珠菌病小鼠模型中具有完全的毒力。ACH1和ACS2都能互补其酿酒酵母同源物中的突变。总之,这些结果表明,乙酰辅酶A的代谢和转运对于白色念珠菌在多种营养物质上的生长至关重要。此外,酿酒酵母和白色念珠菌中这些高度保守基因的突变所产生的表型差异,支持了最近的研究发现,即即使在这些相关酵母的基本代谢途径中也存在显著的功能差异。

相似文献

1
Role of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
Eukaryot Cell. 2008 Oct;7(10):1733-41. doi: 10.1128/EC.00253-08. Epub 2008 Aug 8.
3
Intracellular acetyl unit transport in fungal carbon metabolism.
Eukaryot Cell. 2010 Dec;9(12):1809-15. doi: 10.1128/EC.00172-10. Epub 2010 Oct 1.
6
Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans.
Mol Oral Microbiol. 2013 Aug;28(4):281-91. doi: 10.1111/omi.12024. Epub 2013 Feb 28.
8
Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.
Eukaryot Cell. 2006 Nov;5(11):1847-56. doi: 10.1128/EC.00093-06. Epub 2006 Sep 8.
9
Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae.
J Biol Chem. 2003 May 9;278(19):17203-9. doi: 10.1074/jbc.M213268200. Epub 2003 Feb 26.
10
Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.
PLoS One. 2012;7(8):e42475. doi: 10.1371/journal.pone.0042475. Epub 2012 Aug 2.

引用本文的文献

1
A response to iron involving carbon metabolism in the opportunistic fungal pathogen .
mSphere. 2025 Apr 29;10(4):e0004025. doi: 10.1128/msphere.00040-25. Epub 2025 Apr 4.
2
Discovery and mechanism of a highly selective, antifungal acetyl CoA synthetase inhibitor.
Res Sq. 2025 Jan 1:rs.3.rs-5619443. doi: 10.21203/rs.3.rs-5619443/v1.
3
Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against .
Int J Mol Sci. 2024 Oct 3;25(19):10661. doi: 10.3390/ijms251910661.
4
Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26.
PLoS Biol. 2024 Jun 21;22(6):e3002693. doi: 10.1371/journal.pbio.3002693. eCollection 2024 Jun.
6
Temporal dynamics of morphogenesis and gene expression reveals distinctions between and filamentation.
mSphere. 2024 Apr 23;9(4):e0011024. doi: 10.1128/msphere.00110-24. Epub 2024 Mar 19.
7
Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest.
Nat Microbiol. 2023 Aug;8(8):1480-1494. doi: 10.1038/s41564-023-01432-9. Epub 2023 Jul 31.
8
Candida albicans Oropharyngeal Infection Is an Exception to Iron-Based Nutritional Immunity.
mBio. 2023 Apr 25;14(2):e0009523. doi: 10.1128/mbio.00095-23. Epub 2023 Mar 13.
9
oropharyngeal infection is an exception to iron-based nutritional immunity.
bioRxiv. 2023 Jan 12:2023.01.11.523704. doi: 10.1101/2023.01.11.523704.
10
The Antimicrobial Peptide AMP-17 Derived from Inhibits Biofilm Formation and Eradicates Mature Biofilm in .
Antibiotics (Basel). 2022 Oct 25;11(11):1474. doi: 10.3390/antibiotics11111474.

本文引用的文献

3
An integrated model of the recognition of Candida albicans by the innate immune system.
Nat Rev Microbiol. 2008 Jan;6(1):67-78. doi: 10.1038/nrmicro1815.
5
Accelerated nuclei preparation and methods for analysis of histone modifications in yeast.
Methods. 2006 Dec;40(4):296-302. doi: 10.1016/j.ymeth.2006.06.022.
6
Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.
Eukaryot Cell. 2006 Nov;5(11):1847-56. doi: 10.1128/EC.00093-06. Epub 2006 Sep 8.
8
9
Niche-specific regulation of central metabolic pathways in a fungal pathogen.
Cell Microbiol. 2006 Jun;8(6):961-71. doi: 10.1111/j.1462-5822.2005.00676.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验