Suppr超能文献

通过固相萃取分离脂质类别。

Separation of lipid classes by solid phase extraction.

作者信息

Kim H Y, Salem N

机构信息

Section of Analytical Chemistry, LCS, DICBR, NIAAA, Bethesda, MD 20892.

出版信息

J Lipid Res. 1990 Dec;31(12):2285-9.

PMID:2090722
Abstract

A rapid and reliable method for the separation of lipid classes is described using aminopropyl disposable columns. This method is a modification to an existing procedure that allows the separation of both neutral and acidic phospholipid fractions and a high recovery of the latter. Acidic phospholipids were eluted with a mixture of hexane-2-propanol-ethanol-0.1 M ammonium acetate-formic acid 420:350:100:50:0.5 containing 5% phosphoric acid after neutral phospholipids had been eluted with methanol. It was verified that extremely high recoveries of cholesterol (CH), triglycerides (TG), free fatty acids (FFA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), sphingomyelin (SM), and cerebrosides were obtained with this method. In addition, there appeared to be no preferential losses or degradation of any particular molecular species as the fatty acid distribution of bovine brain PS and the molecular species profile of plant PI were unaltered by the procedure. Depending on the tissue, this method may yield fractions containing pure lipid classes and/or simple mixtures of lipid classes of similar polarity. These fractions may then be more easily separated by thin-layer chromatography or high performance liquid chromatography for a complete lipid class analysis.

摘要

本文描述了一种使用氨丙基一次性柱分离脂质类别的快速可靠方法。该方法是对现有程序的改进,可分离中性和酸性磷脂部分,并能高效回收后者。在用甲醇洗脱中性磷脂后,用含有5%磷酸的己烷-2-丙醇-乙醇-0.1M醋酸铵-甲酸(420:350:100:50:0.5)混合物洗脱酸性磷脂。经证实,该方法能获得极高回收率的胆固醇(CH)、甘油三酯(TG)、游离脂肪酸(FFA)、磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、磷脂酰肌醇(PI)、磷脂酰丝氨酸(PS)、磷脂酸(PA)、鞘磷脂(SM)和脑苷脂。此外,由于该程序未改变牛脑PS的脂肪酸分布和植物PI的分子种类谱,因此似乎不存在任何特定分子种类的优先损失或降解。根据组织的不同,该方法可能会得到含有纯脂质类别和/或极性相似的脂质类简单混合物的部分。然后,这些部分可以通过薄层色谱或高效液相色谱更轻松地分离,以进行完整的脂质类别分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验