Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
Philos Trans R Soc Lond B Biol Sci. 2010 Nov 12;365(1557):3541-52. doi: 10.1098/rstb.2010.0167.
Dynamic energy budget (DEB) theory offers a perspective on population ecology whose starting point is energy utilization by, and homeostasis within, individual organisms. It is natural to ask what it adds to the existing large body of individual-based ecological theory. We approach this question pragmatically--through detailed study of the individual physiology and population dynamics of the zooplankter Daphnia and its algal food. Standard DEB theory uses several state variables to characterize the state of an individual organism, thereby making the transition to population dynamics technically challenging, while ecologists demand maximally simple models that can be used in multi-scale modelling. We demonstrate that simpler representations of individual bioenergetics with a single state variable (size), and two life stages (juveniles and adults), contain sufficient detail on mass and energy budgets to yield good fits to data on growth, maturation and reproduction of individual Daphnia in response to food availability. The same simple representations of bioenergetics describe some features of Daphnia mortality, including enhanced mortality at low food that is not explicitly incorporated in the standard DEB model. Size-structured, population models incorporating this additional mortality component resolve some long-standing questions on stability and population cycles in Daphnia. We conclude that a bioenergetic model serving solely as a 'regression' connecting organismal performance to the history of its environment can rest on simpler representations than those of standard DEB. But there are associated costs with such pragmatism, notably loss of connection to theory describing interspecific variation in physiological rates. The latter is an important issue, as the type of detailed study reported here can only be performed for a handful of species.
动态能量预算(DEB)理论为种群生态学提供了一个视角,其出发点是个体生物的能量利用和体内平衡。自然而然地会问,它对现有的大量基于个体的生态学理论有何补充。我们通过对浮游动物水蚤及其藻类食物的个体生理学和种群动态的详细研究,从实际出发来探讨这个问题。标准的 DEB 理论使用几个状态变量来描述个体生物的状态,从而使向种群动态的过渡在技术上具有挑战性,而生态学家则需要尽可能简单的模型,以便在多尺度建模中使用。我们证明,使用单一状态变量(大小)和两个生命阶段(幼体和成虫)的个体生物能量更简单的表示形式,包含足够的质量和能量预算细节,从而可以很好地拟合个体水蚤对食物供应的生长、成熟和繁殖数据。同样简单的生物能量表示形式描述了水蚤死亡率的一些特征,包括在低食物条件下死亡率增加,而这在标准 DEB 模型中并未明确包含。纳入这种额外死亡率成分的大小结构种群模型解决了关于水蚤稳定性和种群周期的一些长期存在的问题。我们的结论是,仅作为将生物表现与其环境历史联系起来的“回归”的生物能量模型,可以基于比标准 DEB 更简单的表示形式。但是,这种实用主义也存在相关成本,特别是与描述生理速率种间变异的理论失去联系。后者是一个重要的问题,因为这里报告的详细研究类型只能针对少数几种物种进行。