Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17864-71. doi: 10.1073/pnas.1012868107. Epub 2010 Oct 4.
Optical imaging of single biomolecules and complexes in living cells provides a useful window into cellular processes. However, the three-dimensional dynamics of most important biomolecules in living cells remains essentially uncharacterized. The precise subcellular localization of mRNA-protein complexes plays a critical role in the spatial and temporal control of gene expression, and a full understanding of the control of gene expression requires precise characterization of mRNA transport dynamics beyond the optical diffraction limit. In this paper, we describe three-dimensional tracking of single mRNA particles with 25-nm precision in the x and y dimensions and 50-nm precision in the z dimension in live budding yeast cells using a microscope with a double-helix point spread function. Two statistical methods to detect intermittently confined and directed transport were used to quantify the three-dimensional trajectories of mRNA for the first time, using ARG3 mRNA as a model. Measurements and analysis show that the dynamics of ARG3 mRNA molecules are mostly diffusive, although periods of non-Brownian confinement and directed transport are observed. The quantitative methods detailed in this paper can be broadly applied to the study of mRNA localization and the dynamics of diverse other biomolecules in a wide variety of cell types.
在活细胞中对单个生物分子和复合物进行光学成像是深入了解细胞过程的一种有用方法。然而,在活细胞中大多数重要生物分子的三维动力学仍然基本没有得到描述。mRNA-蛋白质复合物的精确亚细胞定位在基因表达的时空控制中起着关键作用,而要全面了解基因表达的控制,就需要超越光学衍射极限,精确描述 mRNA 运输的动力学。在本文中,我们描述了使用具有双螺旋点扩散函数的显微镜,以 25nm 的 x 和 y 维度精度和 50nm 的 z 维度精度,在活出芽酵母细胞中对单个 mRNA 颗粒进行三维跟踪。使用两种统计方法来检测间歇性受限和定向运输,首次对 mRNA 的三维轨迹进行了定量,使用 ARG3 mRNA 作为模型。测量和分析表明,ARG3 mRNA 分子的动力学主要是扩散的,尽管观察到非布朗受限和定向运输的时期。本文详细介绍的定量方法可以广泛应用于研究各种细胞类型中 mRNA 定位和其他各种生物分子的动力学。