Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18138-42. doi: 10.1073/pnas.1010318107. Epub 2010 Oct 4.
The anaerobic acetogenic bacterium Acetobacterium woodii carries out a unique type of Na(+)-motive, anaerobic respiration with caffeate as electron acceptor, termed "caffeate respiration." Central, and so far the only identified membrane-bound reaction in this respiration pathway, is a ferredoxin:NAD(+) oxidoreductase (Fno) activity. Here we show that inverted membrane vesicles of A. woodii couple electron transfer from reduced ferredoxin to NAD(+) with the transport of Na(+) from the outside into the lumen of the vesicles. Na(+) transport was electrogenic, and accumulation was inhibited by sodium ionophores but not protonophores, demonstrating a direct coupling of Fno activity to Na(+) transport. Results from inhibitor studies are consistent with the hypothesis that Fno activity coupled to Na(+) translocation is catalyzed by the Rnf complex, a membrane-bound, iron-sulfur and flavin-containing electron transport complex encoded by many bacterial and some archaeal genomes. Fno is a unique type of primary Na(+) pump and represents an early evolutionary mechanism of energy conservation that expands the redox range known to support life. In addition, it explains the lifestyle of many anaerobic bacteria and gives a mechanistic explanation for the enigma of the energetic driving force for the endergonic reduction of ferredoxin with NADH plus H(+) as reductant in a number of aerobic bacteria.
产乙酸厌氧杆菌是一种独特的以咖啡酸作为电子受体进行 Na(+)-动力、厌氧呼吸的细菌,被称为“咖啡酸呼吸”。这种呼吸途径中,核心且迄今为止唯一确定的膜结合反应是一种[Fe-S]和黄素蛋白依赖的还原型铁氧还蛋白:NAD(+)氧化还原酶(Fno)活性。在这里,我们发现产乙酸厌氧杆菌的反式膜囊泡将还原型铁氧还蛋白的电子转移与 NAD(+)结合,并将 Na(+)从外部转运到囊泡的腔室中。Na(+)转运是电生成的,并且钠离子载体但不是质子载体可以抑制 Na(+)的积累,这表明 Fno 活性与 Na(+)转运直接偶联。抑制剂研究的结果与以下假设一致,即与 Na(+)易化转运偶联的 Fno 活性由 Rnf 复合物催化,Rnf 复合物是一种膜结合的、含铁硫和黄素的电子传递复合物,许多细菌和一些古菌的基因组都编码了该复合物。Fno 是一种独特的初级 Na(+)泵,代表了一种早期的能量守恒进化机制,扩大了已知支持生命的氧化还原范围。此外,它解释了许多厌氧细菌的生活方式,并为一些需氧细菌中以 NADH+H(+)作为还原剂将铁氧还蛋白进行内禀还原的能量驱动力之谜提供了一种机制解释。