文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类肠道微生物组发酵产生的 H 会影响肠道丁酸盐产生菌的代谢和竞争适应性。

H generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers.

机构信息

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.

出版信息

Microbiome. 2023 Jun 15;11(1):133. doi: 10.1186/s40168-023-01565-3.


DOI:10.1186/s40168-023-01565-3
PMID:37322527
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10268494/
Abstract

BACKGROUND: Hydrogen gas (H) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H vary between individuals, raising the possibility that H concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H, and CO. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS: For butyrogens that contained a hydrogenase, growth under a high H atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H or CO. In a synthetic gut microbial community, addition of the H-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS: H is a regulator of fermentation in the human gut microbiome. In particular, high H concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.

摘要

背景:氢气(H)是人体肠道微生物组中碳水化合物发酵的常见产物,其积累可以调节发酵。结肠中 H 的浓度在个体之间存在差异,这使得 H 浓度可能是区分个体微生物组及其代谢物的重要因素。但产丁酸菌(丁酸产生菌)通常在分支发酵途径中产生丁酸、乳酸、甲酸盐、乙酸盐和 H 的某种组合,以管理葡萄糖氧化为乙酸盐和二氧化碳过程中产生的还原力。我们预测,肠道中 H 的高浓度将有利于丁酸产生菌生产丁酸、乳酸和甲酸盐,而不利于乙酸盐、H 和 CO 的生产。由于丁酸作为一种通过抗炎和抗癌特性来调节结肠健康的介质,因此人类肠道中丁酸的产生受到特别关注。

结果:对于含有氢化酶的丁酸产生菌,在高 H 气氛下或存在氢化酶抑制剂 CO 的情况下生长会刺激产生有机发酵产物,这些产物可以容纳糖酵解过程中产生的还原力,特别是丁酸、乳酸和甲酸盐。正如预期的那样,不含有氢化酶的 Faecalibacterium prausnitzii 菌株 A2-165 的培养物中的发酵产物的产生不受 H 或 CO 的影响。在合成肠道微生物群落中,添加消耗 H 的人类肠道产甲烷菌 Methanobrevibacter smithii 会降低 H 浓度的同时降低丁酸的产生。与这一观察结果一致,在一个大型人类队列中,M. smithii 的代谢活性与粪便丁酸的减少有关,但仅在消耗抗性淀粉膳食补充剂时才会出现这种情况,这表明当肠道中 H 的产生特别高时,这种影响可能最为明显。向合成群落中添加 M. smithii 也促进了 E. rectale 的生长,从而降低了 F. prausnitzii 的相对竞争适应度。

结论:H 是人体肠道微生物组中发酵的调节剂。特别是,高 H 浓度刺激抗炎代谢物丁酸的产生。通过消耗 H,肠道产甲烷作用可以降低丁酸的产生。这些丁酸产生的变化也可能影响肠道微生物组中丁酸产生菌的竞争适应度。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/3eccbdc0a5b4/40168_2023_1565_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/ceddf5ffe8b2/40168_2023_1565_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/97259ff07eb9/40168_2023_1565_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/19e6152a6a50/40168_2023_1565_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/3eccbdc0a5b4/40168_2023_1565_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/ceddf5ffe8b2/40168_2023_1565_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/97259ff07eb9/40168_2023_1565_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/19e6152a6a50/40168_2023_1565_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1305/10268494/3eccbdc0a5b4/40168_2023_1565_Fig4_HTML.jpg

相似文献

[1]
H generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers.

Microbiome. 2023-6-15

[2]
Syntrophy via Interspecies H Transfer between and Underlies Their Global Cooccurrence in the Human Gut.

mBio. 2020-2-4

[3]
Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes.

Benef Microbes. 2017-5-30

[4]
Iron Modulates Butyrate Production by a Child Gut Microbiota In Vitro.

mBio. 2015-11-17

[5]
Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities.

mBio. 2020-7-14

[6]
H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut.

FEMS Microbiol Lett. 2006-1

[7]
Lactate cross-feeding between species and contributes to butyrate formation in the human colonic environment.

Appl Environ Microbiol. 2024-1-24

[8]
Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.

Microb Cell Fact. 2019-2-13

[9]
In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production.

Appl Environ Microbiol. 2009-9

[10]
Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology.

Microb Biotechnol. 2017-10-4

引用本文的文献

[1]
Beyond the Gut: Unveiling Methane's Role in Broader Physiological Systems.

FASEB Bioadv. 2025-8-26

[2]
The dynamics of the gut microbiota in prediabetes during a four-year follow-up among European patients-an IMI-DIRECT prospective study.

Genome Med. 2025-7-15

[3]
Gut microbiota-derived short-chain fatty acids and their role in human health and disease.

Nat Rev Microbiol. 2025-5-13

[4]
Molecular hydrogen as a potential mediator of the antitumor effect of inulin consumption.

Sci Rep. 2025-4-3

[5]
Influence of menstrual cycle and oral contraception on taxonomic composition and gas production in the gut microbiome.

J Med Microbiol. 2025-3

[6]
New possibilities of the prevention and treatment of cardiovascular pathologies. the potential of molecular hydrogen in the reduction of oxidative stress and its consequences.

Physiol Res. 2024-12-31

[7]
Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity.

Nutrients. 2024-12-28

[8]
Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids. 2025-1-10

[9]
Interplay of niche and respiratory network in shaping bacterial colonization.

J Biol Chem. 2025-1

[10]
Bilirubin reductase shows host-specific associations in animal large intestines.

ISME J. 2024-1-8

本文引用的文献

[1]
Hydrogen Attenuated Inflammation Response and Oxidative in Hypoxic Ischemic Encephalopathy via Nrf2 Mediated the Inhibition of NLRP3 and NF-κB.

Neuroscience. 2022-3-1

[2]
Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem.

mSystems. 2020-9-8

[3]
Comparative genomics of the genus reveals divergent biosynthetic pathways that may influence colonic competition among species.

Microb Genom. 2020-7

[4]
Syntrophy via Interspecies H Transfer between and Underlies Their Global Cooccurrence in the Human Gut.

mBio. 2020-2-4

[5]
Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers.

mBio. 2019-1-29

[6]
Hydrogen cross-feeders of the human gastrointestinal tract.

Gut Microbes. 2018-12-18

[7]
Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community.

Elife. 2018-10-16

[8]
Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species.

Oncol Lett. 2018-9

[9]
Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD (Rnf) as Electron Acceptors: A Historical Review.

Front Microbiol. 2018-3-14

[10]
Metatranscriptome of human faecal microbial communities in a cohort of adult men.

Nat Microbiol. 2018-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索